Rethink the IoU-based loss functions for bounding box regression

Author(s):  
Hongyu Zhai ◽  
Jian Cheng ◽  
Mengyong Wang
Keyword(s):  
Author(s):  
A. Howie ◽  
D.W. McComb

The bulk loss function Im(-l/ε (ω)), a well established tool for the interpretation of valence loss spectra, is being progressively adapted to the wide variety of inhomogeneous samples of interest to the electron microscopist. Proportionality between n, the local valence electron density, and ε-1 (Sellmeyer's equation) has sometimes been assumed but may not be valid even in homogeneous samples. Figs. 1 and 2 show the experimentally measured bulk loss functions for three pure silicates of different specific gravity ρ - quartz (ρ = 2.66), coesite (ρ = 2.93) and a zeolite (ρ = 1.79). Clearly, despite the substantial differences in density, the shift of the prominent loss peak is very small and far less than that predicted by scaling e for quartz with Sellmeyer's equation or even the somewhat smaller shift given by the Clausius-Mossotti (CM) relation which assumes proportionality between n (or ρ in this case) and (ε - 1)/(ε + 2). Both theories overestimate the rise in the peak height for coesite and underestimate the increase at high energies.


Author(s):  
Кonstantin А. Elshin ◽  
Еlena I. Molchanova ◽  
Мarina V. Usoltseva ◽  
Yelena V. Likhoshway

Using the TensorFlow Object Detection API, an approach to identifying and registering Baikal diatom species Synedra acus subsp. radians has been tested. As a result, a set of images was formed and training was conducted. It is shown that аfter 15000 training iterations, the total value of the loss function was obtained equal to 0,04. At the same time, the classification accuracy is equal to 95%, and the accuracy of construction of the bounding box is also equal to 95%.


Author(s):  
Manpreet Kaur ◽  
Jasdev Bhatti ◽  
Mohit Kumar Kakkar ◽  
Arun Upmanyu

Introduction: Face Detection is used in many different steams like video conferencing, human-computer interface, in face detection, and in the database management of image. Therefore, the aim of our paper is to apply Red Green Blue ( Methods: The morphological operations are performed in the face region to a number of pixels as the proposed parameter to check either an input image contains face region or not. Canny edge detection is also used to show the boundaries of a candidate face region, in the end, the face can be shown detected by using bounding box around the face. Results: The reliability model has also been proposed for detecting the faces in single and multiple images. The results of the experiments reflect that the algorithm been proposed performs very well in each model for detecting the faces in single and multiple images and the reliability model provides the best fit by analyzing the precision and accuracy. Moreover Discussion: The calculated results show that HSV model works best for single faced images whereas YCbCr and TSL models work best for multiple faced images. Also, the evaluated results by this paper provides the better testing strategies that helps to develop new techniques which leads to an increase in research effectiveness. Conclusion: The calculated value of all parameters is helpful for proving that the proposed algorithm has been performed very well in each model for detecting the face by using a bounding box around the face in single as well as multiple images. The precision and accuracy of all three models are analyzed through the reliability model. The comparison calculated in this paper reflects that HSV model works best for single faced images whereas YCbCr and TSL models work best for multiple faced images.


2002 ◽  
Vol 31 (6) ◽  
pp. 925-942 ◽  
Author(s):  
José María Sarabia ◽  
Marta Pascual
Keyword(s):  

2021 ◽  
Vol 13 (9) ◽  
pp. 1779
Author(s):  
Xiaoyan Yin ◽  
Zhiqun Hu ◽  
Jiafeng Zheng ◽  
Boyong Li ◽  
Yuanyuan Zuo

Radar beam blockage is an important error source that affects the quality of weather radar data. An echo-filling network (EFnet) is proposed based on a deep learning algorithm to correct the echo intensity under the occlusion area in the Nanjing S-band new-generation weather radar (CINRAD/SA). The training dataset is constructed by the labels, which are the echo intensity at the 0.5° elevation in the unblocked area, and by the input features, which are the intensity in the cube including multiple elevations and gates corresponding to the location of bottom labels. Two loss functions are applied to compile the network: one is the common mean square error (MSE), and the other is a self-defined loss function that increases the weight of strong echoes. Considering that the radar beam broadens with distance and height, the 0.5° elevation scan is divided into six range bands every 25 km to train different models. The models are evaluated by three indicators: explained variance (EVar), mean absolute error (MAE), and correlation coefficient (CC). Two cases are demonstrated to compare the effect of the echo-filling model by different loss functions. The results suggest that EFnet can effectively correct the echo reflectivity and improve the data quality in the occlusion area, and there are better results for strong echoes when the self-defined loss function is used.


2021 ◽  
Vol 7 (2) ◽  
pp. 16
Author(s):  
Pedro Furtado

Image structures are segmented automatically using deep learning (DL) for analysis and processing. The three most popular base loss functions are cross entropy (crossE), intersect-over-the-union (IoU), and dice. Which should be used, is it useful to consider simple variations, such as modifying formula coefficients? How do characteristics of different image structures influence scores? Taking three different medical image segmentation problems (segmentation of organs in magnetic resonance images (MRI), liver in computer tomography images (CT) and diabetic retinopathy lesions in eye fundus images (EFI)), we quantify loss functions and variations, as well as segmentation scores of different targets. We first describe the limitations of metrics, since loss is a metric, then we describe and test alternatives. Experimentally, we observed that DeeplabV3 outperforms UNet and fully convolutional network (FCN) in all datasets. Dice scored 1 to 6 percentage points (pp) higher than cross entropy over all datasets, IoU improved 0 to 3 pp. Varying formula coefficients improved scores, but the best choices depend on the dataset: compared to crossE, different false positive vs. false negative weights improved MRI by 12 pp, and assigning zero weight to background improved EFI by 6 pp. Multiclass segmentation scored higher than n-uniclass segmentation in MRI by 8 pp. EFI lesions score low compared to more constant structures (e.g., optic disk or even organs), but loss modifications improve those scores significantly 6 to 9 pp. Our conclusions are that dice is best, it is worth assigning 0 weight to class background and to test different weights on false positives and false negatives.


Author(s):  
Zhenzhen Yang ◽  
Pengfei Xu ◽  
Yongpeng Yang ◽  
Bing-Kun Bao

The U-Net has become the most popular structure in medical image segmentation in recent years. Although its performance for medical image segmentation is outstanding, a large number of experiments demonstrate that the classical U-Net network architecture seems to be insufficient when the size of segmentation targets changes and the imbalance happens between target and background in different forms of segmentation. To improve the U-Net network architecture, we develop a new architecture named densely connected U-Net (DenseUNet) network in this article. The proposed DenseUNet network adopts a dense block to improve the feature extraction capability and employs a multi-feature fuse block fusing feature maps of different levels to increase the accuracy of feature extraction. In addition, in view of the advantages of the cross entropy and the dice loss functions, a new loss function for the DenseUNet network is proposed to deal with the imbalance between target and background. Finally, we test the proposed DenseUNet network and compared it with the multi-resolutional U-Net (MultiResUNet) and the classic U-Net networks on three different datasets. The experimental results show that the DenseUNet network has significantly performances compared with the MultiResUNet and the classic U-Net networks.


Sign in / Sign up

Export Citation Format

Share Document