2 DOF lateral dynamic model with force input of skid steering wheeled vehicle

Author(s):  
Zengxiong Peng ◽  
Gongtao Ning
Author(s):  
Xing Zhang ◽  
Weiya Pei ◽  
Xufeng Yin ◽  
Shihua Yuan

With the increasing demand of military and civilian in the intelligent vehicles, the skid-steering theory has been widely used in unmanned ground vehicles, especially in unmanned military vehicles and unmanned surveillance platforms. Due to its driving environment complex and variable, which requires stricter dynamic control system. In order to improve the active safety performance of the skid-steering unmanned vehicle and develop the key technologies such as behavior decision planning technology, path tracking, and dynamic control technology, it is necessary to develop the dynamic state parameter observation system based on skid-steering theory. In this paper, an observation using Strong Track External Kalman Filter theory with noise matrix adaptive is designed to estimate vehicle kinematic parameters based on a 6 × 6 skid-steered unmanned vehicle. First, kinematic and dynamic model is built to analyze the characters of a skid-steered wheeled vehicle. Then a tire force estimation method based on dynamic model is presented to observe the tire longitude and vertical force. The tire force data is also used by Dugoff nonlinear model. Then an External Kalman Filter theory is designed to estimate vehicle kinematic parameters. To increase the accuracy and the robustness of the observer, the Strong Tracking EKF (STEKF) and noise adaptive adjustment is designed. Finally, a combined simulation using TruckSim and Simulink and the experiment using a 6 × 6 skid-steered unmanned vehicle verifies the efficiency of the observer. Results show that the observer is able to estimate the skid-steered wheeled vehicle states, and it also shows that the yaw rate result in the slip angle difference between each tire.


Author(s):  
Zhang Yu ◽  
Hu Jibin ◽  
Li Xueyuan ◽  
Lyu Shupeng ◽  
Guo Jing

2013 ◽  
Vol 694-697 ◽  
pp. 1025-1029
Author(s):  
Juh Yun An ◽  
In Nam Lee ◽  
Ki Ho Kim ◽  
Kwan Ho You

The dynamic model of a remote controlled sprayer using skid-steering method is presented as a state equation. The precision tracking of the remote controlled sprayer is difficult to realize due to sensor noise. In this paper, we propose the extended Kalman filter (EKF) algorithm to compensate for the odometric sensor noise. To demonstrate the performance of the proposed algorithm, simulations which represent a real working sprayer in a greenhouse are performed. The results show the improved localization accuracy obtained by using the proposed algorithm.


Author(s):  
Mohammad Amin Saeedi

In this study, a new controller to prevent the yaw instability and rollover of a three-wheeled vehicle has been proposed. This controller offers the most obvious opportunity for affecting the vehicle's lateral dynamics performance on the full range of nonlinearities during various operating boundaries. The active combined controller has been designed based on sliding mode control method using an active roll system and an active braking system to dominate the uncertainties of the nonlinear dynamic model. Firstly, to avoid rollover of the three-wheeled vehicle, the roll angle was considered as the control objective, and the anti-roll bar was employed as an actuator to produce the roll moment. Secondly, to increase the maneuverability and lateral dynamics enhancement, an active braking system was designed. In the control system, the yaw rate and the lateral velocity were regarded as the control variables to track their references. Moreover, to verify the performance of the mentioned combined controller, another control system has been designed using the linearization feedback control method. Then, computer simulation has been carried out with a 12 degrees of freedom dynamic model of the three-wheeled vehicle called the delta. Furthermore, a nonlinear tire model has been utilized to compute the longitudinal and the lateral forces. Next, the comparative simulation results confirmed the effectiveness of the robust control system to raise the vehicle's maneuverability and its rollover stability in comparison with the linearization feedback control method, especially when the three-wheeled vehicle is subjected to critical conditions.


2016 ◽  
Vol 85 (3-4) ◽  
pp. 577-595
Author(s):  
Alicja Mazur ◽  
Wojciech Domski ◽  
Elżbieta Roszkowska

AbstractIn the paper new control method of skid steering mobile platforms has been presented. Such platforms are robotic objects with deficit of control inputs in dynamic model, i.e. they are dynamically under-actuated. To compensate lack of controls, it has been assumed that there are additional factitious inputs to dynamics (so-called factitious forces), which preserve possibility to control dynamical model of skid steering mobile platform, expressed in auxiliary velocities. Factitious inputs do not exist in reality therefore it was assumed that they are equal to zero equivalently. Signals calculated from implicit functions defining factitious forces make possible to approximate slipping effects and they can be taken into account by construction of control law.


2008 ◽  
Vol 45 ◽  
pp. 147-160 ◽  
Author(s):  
Jörg Schaber ◽  
Edda Klipp

Volume is a highly regulated property of cells, because it critically affects intracellular concentration. In the present chapter, we focus on the short-term volume regulation in yeast as a consequence of a shift in extracellular osmotic conditions. We review a basic thermodynamic framework to model volume and solute flows. In addition, we try to select a model for turgor, which is an important hydrodynamic property, especially in walled cells. Finally, we demonstrate the validity of the presented approach by fitting the dynamic model to a time course of volume change upon osmotic shock in yeast.


Sign in / Sign up

Export Citation Format

Share Document