Effects of Solder Mask Application Method on The Reliability of An Automotive Flip Chip PBGA Microcontroller

Author(s):  
A R Nazmus Sakib ◽  
Richard S Lai ◽  
Sandeep Shantaram
2010 ◽  
Vol 2010 (1) ◽  
pp. 000197-000203 ◽  
Author(s):  
Eric Ouyang ◽  
MyoungSu Chae ◽  
Seng Guan Chow ◽  
Roger Emigh ◽  
Mukul Joshi ◽  
...  

In this paper, a novel flip chip interconnect structure called Bond-On-Lead (BOL) and its ability to reduce stress in the sensitive sub-surface ELK (Extra Low K) layers of the die is presented. BOL is a new low cost flip chip packaging solution which was developed by STATSChipPAC to dramatically reduce the cost of flip chip packaging. The BOL solution allows for efficient substrate routing by virtue of the use of narrow BOL pads and the removal of solder mask in the area of the BOL pads, which eliminates the limitations associated with solder mask opening sizes and positional tolerances. In addition to the compelling cost benefits, modeling results are confirmed with empirical reliability testing data to show that BOL is superior to the traditional Bond-on-Capture Pad (BOC) configuration from a mechanical stress and reliability perspective. The focus of this paper is on the theoretical analysis of the stress, strain, and warpage associated with the BOL configuration compared with the traditional BOC structure. For the package deformation, the global finite element method is used to simulate the package warpage. For the local bumping reliability, the focus is on the ELK layers which are the critical locations affecting the package's reliability. The local finite element simulation is conducted to compare the critical ELK layers stresses with BOL structure vs. with traditional BOC structure.


1998 ◽  
Vol 120 (2) ◽  
pp. 150-155 ◽  
Author(s):  
X. Yan ◽  
R. K. Agarwal

Two test specimens are developed to measure interfacial fracture toughness in flip-chip assemblies. The specimens consist of three layers: silicon chip, underfill, and circuit board. Two symmetric edge cracks are embedded along the interface, either between the chip and the underfill or between the underfill and the circuit board. The specimens are subjected to four-point-bend loading and critical loads are obtained. Analytical solutions for energy release rate have been derived for these two specimens and used to obtain the toughness from the measured critical loads. These specimens have been used to evaluate material combinations of chip passivation, underfill and solder mask for desired interfacial strength.


2020 ◽  
pp. 57-62
Author(s):  
Olga Yu. Kovalenko ◽  
Yulia A. Zhuravlyova

This work contains analysis of characteristics of automobile lamps by Philips, KOITO, ETI flip chip LEDs, Osram, General Electric (GE), Gtinthebox, OSLAMPledbulbs with H1, H4, H7, H11 caps: luminous flux, luminous efficacy, correlated colour temperature. Characteristics of the studied samples are analysed before the operation of the lamps. The analysis of the calculation results allows us to make a conclusion that the values of correlated colour temperature of halogen lamps are close to the parameters declared by manufacturers. The analysis of the study results has shown that, based on actual values of correlated colour temperature, it is not advisable to use LED lamps in unfavourable weather conditions (such as rain, fog, snow). The results of the study demonstrate that there is a slight dispersion of actual values of luminous flux of halogen lamps by different manufacturers. Maximum variation between values of luminous flux of different lamps does not exceed 14 %. The analysis of the measurement results has shown that actual values of luminous flux of all halogen lamps comply with the mandatory rules specified in the UN/ECE Regulation No. 37 and luminous flux of LED lamps exceeds maximum allowable value by more than 8 %. Luminous efficacy of LED lamps is higher than that of halogen lamps: more than 82 lm/W and lower power consumption. The results of the measurements have shown that power consumption of a LED automobile lamp is lower than that of similar halogen lamps by 3 times and their luminous efficacy is higher by 5 times.


2016 ◽  
Vol 53 ◽  
pp. 12-15 ◽  
Author(s):  
Mitchell D. Richmond ◽  
Robert C. Pearce ◽  
William A. Bailey
Keyword(s):  

2003 ◽  
Vol 46 ◽  
pp. 12-16 ◽  
Author(s):  
L. R. Fisher ◽  
W. D. Smith ◽  
J. W. Wilcut

Sign in / Sign up

Export Citation Format

Share Document