Two-Phase Immersion Cooling of Microprocessors with Electroplated Porous Heat Spreaders: Thermal Performance and Reliability

Author(s):  
Chady Al Sayed ◽  
Omidreza Ghaffari ◽  
Yaser Nabavi Larimi ◽  
Francis Grenier ◽  
Simon Jasmin ◽  
...  
Author(s):  
Bharath Ramakrishnan ◽  
Husam Alissa ◽  
Ioannis Manousakis ◽  
Robert Lankston ◽  
Ricardo Bianchini ◽  
...  

Author(s):  
Jimmy Chuang ◽  
Jin Yang ◽  
David Shia ◽  
Y L Li

Abstract In order to meet increasing performance demand from high-performance computing (HPC) and edge computing, thermal design power (TDP) of CPU and GPU needs to increase. This creates thermal challenge to corresponding electronic packages with respect to heat dissipation. In order to address this challenge, two-phase immersion cooling is gaining attention as its primary mode of heat of removal is via liquid-to-vapor phase change, which can occur at relatively low and constant temperatures. In this paper, integrated heat spreader (IHS) with boiling enhancement features is proposed. 3D metal printing and metal injection molding (MIM) are the two approaches used to manufacture the new IHS. The resultant IHS with enhancement features are used to build test vehicles (TV) by following standard electronic package assembly process. Experimental results demonstrated that boiling enhanced TVs improved two-phase immersion cooling capability by over 50% as compared to baseline TV without boiling enhanced features.


2014 ◽  
Vol 136 (6) ◽  
Author(s):  
S. M. Thompson ◽  
H. B. Ma

A unique nondimensional scheme that employs a source-to-substrate “area ratio” (e.g., footprint), has been utilized for analytically determining the steady-state temperature field within a centrally-heated, cuboidal heat spreader with square cross-section. A modified Laplace equation was solved using a Fourier expansion method providing for an infinite cosine series solution. This solution can be used to analyze the effects of Biot number, heat spreader thickness, and area ratio on the heat spreader's nondimensional maximum temperature and nondimensional thermal spreading resistance. The solution is accurate only for low Biot numbers (Bi < 0.001); representative of highly-conductive, two-phase heat spreaders. Based on the solution, a unique method for estimating the effective thermal conductivity of a two-phase heat spreader is also presented.


2006 ◽  
Vol 100 (10) ◽  
pp. 104909 ◽  
Author(s):  
H. S. Xue ◽  
J. R. Fan ◽  
Y. C. Hu ◽  
R. H. Hong ◽  
K. F. Cen

Sign in / Sign up

Export Citation Format

Share Document