Transient behavior experiments for hybrid fuel cell-battery systems

Author(s):  
Chung-Hsing Chao ◽  
Tien-Chien Jen
Author(s):  
A. Verma ◽  
R. Pitchumani

Due to rapid change in loads during automotive applications, study of dynamic behavior of proton exchange membrane (PEM) fuel cells is of paramount importance for their successful deployment in mobile applications. Toward understanding the effects of changes in operating parameters on the transient behavior, this paper presents numerical simulations for a single channel PEM fuel cell undergoing cyclic changes in operating parameters. The objective is to elucidate the complex interaction between power response and complex species (water, hydrogen and oxygen) transport dynamics for applied cyclic changes. This study focuses on studying the transient response of fuel cell for specified changes in operating parameters — voltage, pressure and stoichiometry at the cathode and the anode. Numerical studies are carried out on single-channel PEMFC’s to illustrate the response of power as the operating parameters are subjected to specified changes. The operating parameters are further optimized using a one dimensional physics based model with an objective to match the power requirements of a drive cycle over a defined period of time.


Author(s):  
Paolo Pezzini ◽  
David Tucker ◽  
Alberto Traverso

A new emergency shutdown procedure for a direct-fired fuel cell turbine hybrid power system was evaluated using a hardware-based simulation of an integrated gasifier/fuel cell/turbine hybrid cycle (IGFC), implemented through the Hybrid Performance (Hyper) project at the National Energy Technology Laboratory, U.S. Department of Energy (NETL). The Hyper facility is designed to explore dynamic operation of hybrid systems and quantitatively characterize such transient behavior. It is possible to model, test, and evaluate the effects of different parameters on the design and operation of a gasifier/fuel cell/gas turbine hybrid system and provide a means of quantifying risk mitigation strategies. An open-loop system analysis regarding the dynamic effect of bleed air, cold air bypass, and load bank is presented in order to evaluate the combination of these three main actuators during emergency shutdown. In the previous Hybrid control system architecture, catastrophic compressor failures were observed when the fuel and load bank were cut off during emergency shutdown strategy. Improvements were achieved using a nonlinear fuel valve ramp down when the load bank was not operating. Experiments in load bank operation show compressor surge and stall after emergency shutdown activation. The difficulties in finding an optimal compressor and cathode mass flow for mitigation of surge and stall using these actuators are illustrated.


2008 ◽  
Vol 177 (2) ◽  
pp. 404-411 ◽  
Author(s):  
Lixing Hao ◽  
Hongmei Yu ◽  
Junbo Hou ◽  
Wei Song ◽  
Zhigang Shao ◽  
...  

2001 ◽  
Author(s):  
Randall S. Gemmen

Abstract The effect of inverter ripple current on fuel cell stack performance and stack lifetime remains uncertain. This paper provides a first attempt to examine the impact of inverter load dynamics on the fuel cell. Since reactant utilization is known to impact the mechanical state of a fuel cell, it is suggested that the varying reactant conditions surrounding the cell govern, at least in part, the lifetime of the cells. This paper investigates these conditions through the use of a dynamic model for the bulk conditions within the stack, as well as a one-dimensional model for the detailed mass transport occurring within the electrode of a cell. These two independent modeling approaches help to verify their respective numerical procedures. In this work, the inverter load is imposed as a boundary condition to the models. Results show the transient behavior of the reactant concentrations within the stack, and of the mass diffusion within the electrode under inverter loads with frequencies between 30 Hz and 1250 Hz.


2010 ◽  
Vol 195 (24) ◽  
pp. 8006-8012 ◽  
Author(s):  
Doug Brunner ◽  
Ajay K. Prasad ◽  
Suresh G. Advani ◽  
Brian W. Peticolas

Sign in / Sign up

Export Citation Format

Share Document