Cooperative task assignment algorithm of manned/unmanned aerial vehicle in uncertain environment

Author(s):  
Li Bo ◽  
Wang Yuanxun ◽  
Zhang Yanbo ◽  
Chen Daqing
2018 ◽  
Vol 10 (12) ◽  
pp. 168781401881523 ◽  
Author(s):  
Yohanes Khosiawan ◽  
Sebastian Scherer ◽  
Izabela Nielsen

Autonomous bridge inspection operations using unmanned aerial vehicles take multiple task assignments and constraints into account. To efficiently execute the operations, a schedule is required. Generating a cost optimum schedule of multiple-unmanned aerial vehicle operations is known to be Non-deterministic Polynomial-time (NP)-hard. This study approaches such a problem with heuristic-based algorithms to get a high-quality feasible solution in a short computation time. A constructive heuristic called Retractable Chain Task Assignment algorithm is presented to build an evaluable schedule from a task sequence. The task sequence representation is used during the search to perform seamless operations. Retractable Chain Task Assignment algorithm calculates and incorporates slack time to the schedule according to the properties of the task. The slack time acts as a cushion which makes the schedule delay-tolerant. This algorithm is incorporated with a metaheuristic algorithm called Multi-strategy Coevolution to search the solution space. The proposed algorithm is verified through numerical simulations, which take inputs from real flight test data. The obtained solutions are evaluated based on the makespan, battery consumption, computation time, and the robustness level of the schedules. The performance of Multi-strategy Coevolution is compared to Differential Evolution, Particle Swarm Optimization, and Differential Evolution–Fused Particle Swarm Optimization. The simulation results show that Multi-strategy Coevolution gives better objective values than the other algorithms.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Xiaowei Fu ◽  
Peng Feng ◽  
Bin Li ◽  
Xiaoguang Gao

For the large-scale operations of unmanned aerial vehicle (UAV) swarm and the large number of UAVs, this paper proposes a two-layer task and resource assignment algorithm based on feature weight clustering. According to the numbers and types of task resources of each UAV and the distances between different UAVs, the UAV swarm is divided into multiple UAV clusters, and the large-scale allocation problem is transformed into several related small-scale problems. A two-layer task assignment algorithm based on the consensus-based bundle algorithm (CBBA) is proposed, and this algorithm uses different consensus rules between clusters and within clusters, which ensures that the UAV swarm gets a conflict-free task assignment solution in real time. The simulation results show that the algorithm can assign tasks effectively and efficiently when the number of UAVs and targets is large.


2021 ◽  
pp. 002029402110022
Author(s):  
Song Han ◽  
Chenchen Fan ◽  
Xinbin Li ◽  
Xi Luo ◽  
Zhixin Liu

This study deals with the task assignment problem of heterogeneous unmanned aerial vehicle (UAV) system with the limited resources and task priority constraints. The optimization model which comprehensively considers the resource consumption, task completion effect, and workload balance is formulated. Then, a concept of fuzzy elite degree is proposed to optimize and balance the transmission of good genes and the variation strength of population during the operations of algorithm. Based on the concept, we propose the fuzzy elite strategy genetic algorithm (FESGA) to efficiently solve the complex task assignment problem. In the proposed algorithm, two unlock methods are presented to solve the deadlock problem in the random optimization process; a sudden threat countermeasure (STC) mechanism is presented to help the algorithm quickly respond to the change of task environment caused by sudden threats. The simulation results demonstrate the superiority of the proposed algorithm. Meanwhile, the effectiveness and feasibility of the algorithm in workload balance and task priority constraints are verified.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Shunqi Liu ◽  
Xi Fang ◽  
Yi Guo ◽  
Chenwei Liu ◽  
Jian Yang

The development of artificial intelligence technology has brought changes to various industries. Under the concept of green sustainable development, how to use the progress of science and technology to implement low-carbon strategies is a problem that every enterprise should consider. Aiming at the problem of picking up goods in logistics industry, this paper proposed a secondary task assignment theory for multiple unmanned aerial vehicle (Multi-UAV) based on green scheduling. The theory greatly improves the utilization rate of unmanned aerial vehicle (UAV) and reduces the energy consumption. We analyzed the advantages and disadvantages of local optimal algorithm and global optimal algorithm in time and energy consumption. Through repeated experiments in different ranges, we have well verified the high efficiency and general applicability of this theory, which can provide theoretical and practical implications for logistics enterprises using UAV to achieve low-carbon sustainable development in the future.


2020 ◽  
Vol 20 (4) ◽  
pp. 332-342
Author(s):  
Hyung Jun Park ◽  
Seong Hee Cho ◽  
Kyung-Hwan Jang ◽  
Jin-Woon Seol ◽  
Byung-Gi Kwon ◽  
...  

2018 ◽  
pp. 7-13
Author(s):  
Anton M. Mishchenko ◽  
Sergei S. Rachkovsky ◽  
Vladimir A. Smolin ◽  
Igor V . Yakimenko

Results of experimental studying radiation spatial structure of atmosphere background nonuniformities and of an unmanned aerial vehicle being the detection object are presented. The question on a possibility of its detection using optoelectronic systems against the background of a cloudy field in the near IR wavelength range is also considered.


Author(s):  
Amir Birjandi ◽  
◽  
Valentin Guerry ◽  
Eric Bibeau ◽  
Hamidreza Bolandhemmat ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document