Lipid Phase Distribution and Acoustic Response of DSPE-based Microbubbles

Author(s):  
Simone A.G. Langeveld ◽  
Gonzalo Collado-Lara ◽  
Gerrit J. W. Wiggers ◽  
Antonius F.W. Van Der Steen ◽  
Nico De Jong ◽  
...  
Pharmaceutics ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 119
Author(s):  
Simone A.G. Langeveld ◽  
Inés Beekers ◽  
Gonzalo Collado-Lara ◽  
Antonius F. W. van der Steen ◽  
Nico de Jong ◽  
...  

Phospholipid-coated microbubbles are ultrasound contrast agents that can be employed for ultrasound molecular imaging and drug delivery. For safe and effective implementation, microbubbles must respond uniformly and predictably to ultrasound. Therefore, we investigated how lipid handling and phase distribution affected the variability in the acoustic behavior of microbubbles. Cholesterol was used to modify the lateral molecular packing of 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC)-based microbubbles. To assess the effect of lipid handling, microbubbles were produced by a direct method, i.e., lipids directly dispersed in an aqueous medium or indirect method, i.e., lipids first dissolved in an organic solvent. The lipid phase and ligand distribution in the microbubble coating were investigated using confocal microscopy, and the acoustic response was recorded with the Brandaris 128 ultra-high-speed camera. In microbubbles with 12 mol% cholesterol, the lipids were miscible and all in the same phase, which resulted in more buckle formation, lower shell elasticity and higher shell viscosity. Indirect DSPC microbubbles had a more uniform response to ultrasound than direct DSPC and indirect DSPC-cholesterol microbubbles. The difference in lipid handling between direct and indirect DSPC microbubbles significantly affected the acoustic behavior. Indirect DSPC microbubbles are the most promising candidate for ultrasound molecular imaging and drug delivery applications.


Author(s):  
S. Hasegawa ◽  
T. Kawasaki ◽  
J. Endo ◽  
M. Futamoto ◽  
A. Tonomura

Interference electron microscopy enables us to record the phase distribution of an electron wave on a hologram. The distribution is visualized as a fringe pattern in a micrograph by optical reconstruction. The phase is affected by electromagnetic potentials; scalar and vector potentials. Therefore, the electric and magnetic field can be reduced from the recorded phase. This study analyzes a leakage magnetic field from CoCr perpendicular magnetic recording media. Since one contour fringe interval corresponds to a magnetic flux of Φo(=h/e=4x10-15Wb), we can quantitatively measure the field by counting the number of finges. Moreover, by using phase-difference amplification techniques, the sensitivity for magnetic field detection can be improved by a factor of 30, which allows the drawing of a Φo/30 fringe. This sensitivity, however, is insufficient for quantitative analysis of very weak magnetic fields such as high-density magnetic recordings. For this reason we have adopted “fringe scanning interferometry” using digital image processing techniques at the optical reconstruction stage. This method enables us to obtain subfringe information recorded in the interference pattern.


Author(s):  
T. Hirayama ◽  
Q. Ru ◽  
T. Tanji ◽  
A. Tonomura

The observation of small magnetic materials is one of the most important applications of electron holography to material science, because interferometry by means of electron holography can directly visualize magnetic flux lines in a very small area. To observe magnetic structures by transmission electron microscopy it is important to control the magnetic field applied to the specimen in order to prevent it from changing its magnetic state. The easiest method is tuming off the objective lens current and focusing with the first intermediate lens. The other method is using a low magnetic-field lens, where the specimen is set above the lens gap.Figure 1 shows an interference micrograph of an isolated particle of barium ferrite on a thin carbon film observed from approximately [111]. A hologram of this particle was recorded by the transmission electron microscope, Hitachi HF-2000, equipped with an electron biprism. The phase distribution of the object electron wave was reconstructed digitally by the Fourier transform method and converted to the interference micrograph Fig 1.


Author(s):  
Mahesh Chandramouli

Magnetization reversal in sintered Fe-Nd-B, a complex, multiphase material, occurs by nucleation and growth of reverse domains making the isolation of the ferromagnetic Fe14Nd2B grains by other nonmagnetic phases crucial. The magnets used in this study were slightly rich in Nd (in comparison to Fe14Nd2B) to promote the formation of Nd-oxides at multigrain junctions and incorporated Dy80Al20 as a liquid phase sintering addition. Dy has been shown to increase the domain wall energy thus making nucleation more difficult while Al is thought to improve the wettability of the Nd-oxide phases.Bulk polished samples were examined in a JEOL 35CF scanning electron microscope (SEM) operated at 30keV equipped with a Be window energy dispersive spectrometer (EDS) detector in order to determine the phase distribution.


2002 ◽  
Author(s):  
J.H. Park ◽  
W.L. Fu ◽  
T.W. Guo ◽  
Gunol Kojasoy

1992 ◽  
Vol 6 (1-4) ◽  
pp. 257-301 ◽  
Author(s):  
Akimi Serizawa ◽  
Isao Kataoka ◽  
Itaru Michiyoshi

Sign in / Sign up

Export Citation Format

Share Document