Effects of SiO2 layer on the performance of a LNOI Acoustic Wave Resonator

Author(s):  
Jordi Verdu ◽  
Patricia Silveira ◽  
Eloi Guerrero ◽  
Lluis Acosta ◽  
Pedro De Paco
AIP Advances ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 075002
Author(s):  
Xiaoyuan Bai ◽  
Yao Shuai ◽  
Lu Lv ◽  
Ying Xing ◽  
Jiaoling Zhao ◽  
...  

2016 ◽  
Vol 37 (7) ◽  
pp. 074009
Author(s):  
Xixi Han ◽  
Yi Ou ◽  
Zhigang Li ◽  
Wen Ou ◽  
Dapeng Chen ◽  
...  

2015 ◽  
Vol 36 (12) ◽  
pp. 1527-1538 ◽  
Author(s):  
Zinan Zhao ◽  
Zhenghua Qian ◽  
Bin Wang ◽  
Jiashi Yang

2002 ◽  
Vol 743 ◽  
Author(s):  
Sverre V. Pettersen ◽  
Thomas Tybell ◽  
Arne Rønnekleiv ◽  
Stig Rooth ◽  
Veit Schwegler ◽  
...  

ABSTRACTWe report on fabrication and measurement of a surface acoustic wave resonator prepared on ∼10m thick GaN(0001) films. The films were grown by metal-organic vapor phase epitaxy on a c-plane sapphire substrate. The surface morphology of the films were examined with scanning electron and atomic force microscopy. A metallic bilayer of Al/Ti was subsequently evaporated on the nitride film surface. Definition of the resonator interdigital transducers, designed for a wavelength of λ=7.76m, was accomplished with standard UV lithography and lift-off. S-parameter measurements showed a resonator center frequency f0=495MHz at room temperature, corresponding to a surface acoustic wave velocity of 3844m/s. The insertion loss at center frequency was measured at 8.2dB, and the loaded Q-factor was estimated at 2200. Finally, measurements of the resonator center frequency for temperatures in the range 25–155°C showed a temperature coefficient of -18ppm/°C. The intrinsic GaN SAW velocity and electromechanical coupling coefficient were estimated at νSAW=383 1m/s and K2=1.8±0.4·10−3.


Author(s):  
M. Benetti ◽  
D. Cannat ◽  
A. D'Amico ◽  
F. Di Pietrantonio ◽  
V. Foglietti ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document