Analysis of thickness-shear and thickness-twist modes of AT-cut quartz acoustic wave resonator and filter

2015 ◽  
Vol 36 (12) ◽  
pp. 1527-1538 ◽  
Author(s):  
Zinan Zhao ◽  
Zhenghua Qian ◽  
Bin Wang ◽  
Jiashi Yang
1995 ◽  
Vol 73 (9) ◽  
pp. 1427-1435 ◽  
Author(s):  
Zhiping Deng ◽  
David C. Stone ◽  
Michael Thompson

Poly N-(2-cyanoethyl)pyrrole films have been synthesized by electrochemical polymerization and characterized by cyclic voltammetry, scanning electron microscopy, and X-ray photoelectron spectroscopy. Polymeric coatings prepared on the surface of a thickness-shear-mode acoustic wave sensor have been used to examine response selectivity to a number of gas-phase probe molecules. The responses of the poly N-(2-cyanoethyl)pyrrole based sensor are compared with the parent polypyrrole device and rationalized in terms of the molecular interactions between probes and polymer films. The polar cyano functionality enhances interactions with analytes such as acetonitrile. Keywords: gas sensor, thickness-shear-mode acoustic wave sensor, poly N-(2-cyanoethyl)pyrrole film, polypyrrole film, conducting polymer.


AIP Advances ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 075002
Author(s):  
Xiaoyuan Bai ◽  
Yao Shuai ◽  
Lu Lv ◽  
Ying Xing ◽  
Jiaoling Zhao ◽  
...  

2016 ◽  
Vol 37 (7) ◽  
pp. 074009
Author(s):  
Xixi Han ◽  
Yi Ou ◽  
Zhigang Li ◽  
Wen Ou ◽  
Dapeng Chen ◽  
...  

Author(s):  
Lifeng Qin ◽  
Zijing Zeng ◽  
Hongbin Cheng ◽  
Qing-ming Wang

2002 ◽  
Vol 743 ◽  
Author(s):  
Sverre V. Pettersen ◽  
Thomas Tybell ◽  
Arne Rønnekleiv ◽  
Stig Rooth ◽  
Veit Schwegler ◽  
...  

ABSTRACTWe report on fabrication and measurement of a surface acoustic wave resonator prepared on ∼10m thick GaN(0001) films. The films were grown by metal-organic vapor phase epitaxy on a c-plane sapphire substrate. The surface morphology of the films were examined with scanning electron and atomic force microscopy. A metallic bilayer of Al/Ti was subsequently evaporated on the nitride film surface. Definition of the resonator interdigital transducers, designed for a wavelength of λ=7.76m, was accomplished with standard UV lithography and lift-off. S-parameter measurements showed a resonator center frequency f0=495MHz at room temperature, corresponding to a surface acoustic wave velocity of 3844m/s. The insertion loss at center frequency was measured at 8.2dB, and the loaded Q-factor was estimated at 2200. Finally, measurements of the resonator center frequency for temperatures in the range 25–155°C showed a temperature coefficient of -18ppm/°C. The intrinsic GaN SAW velocity and electromechanical coupling coefficient were estimated at νSAW=383 1m/s and K2=1.8±0.4·10−3.


2021 ◽  
Author(s):  
Jordi Verdu ◽  
Patricia Silveira ◽  
Eloi Guerrero ◽  
Lluis Acosta ◽  
Pedro De Paco

Sign in / Sign up

Export Citation Format

Share Document