Driver activity analysis for intelligent vehicles: issues and development framework

Author(s):  
S. Park ◽  
Mohan Trivedi
2018 ◽  
Vol 44 (2) ◽  
pp. 122-128
Author(s):  
A. V. Skubilina ◽  
◽  
О. O. Makeeva ◽  

2017 ◽  
Vol 6 (3) ◽  
pp. 2948-2950
Author(s):  
Vaishnavi Sivakali Subramanian ◽  
◽  
R.V Geetha ◽  
Anitha Roy ◽  
◽  
...  

2019 ◽  
Author(s):  
Caleb Karmel ◽  
Zhewei Chen ◽  
John Hartwig

We report a new system for the silylation of aryl C-H bonds. The combination of [Ir(cod)(OMe)]<sub>2</sub> and 2,9-Me<sub>2</sub>-phenanthroline (2,9-Me<sub>2</sub>phen) catalyzes the silylation of arenes at lower temperatures and with faster rates than those reported previously, when the hydrogen byproduct is removed, and with high functional group tolerance and regioselectivity. Inhibition of reactions by the H<sub>2</sub> byproduct is shown to limit the silylation of aryl C-H bonds in the presence of the most active catalysts, thereby masking their high activity. Analysis of initial rates uncovered the high reactivity of the catalyst containing the sterically hindered 2,9-Me<sub>2</sub>phen ligand but accompanying rapid inhibition by hydrogen. With this catalyst, under a flow of nitrogen to remove hydrogen, electron-rich arenes, including those containing sensitive functional groups, undergo silylation in high yield for the first time, and arenes that underwent silylation with prior catalysts react over much shorter times with lower catalyst loadings. The synthetic value of this methodology is demonstrated by the preparation of key intermediates in the synthesis of medicinally important compounds in concise sequences comprising silylation and functionalization. Mechanistic studies demonstrate that the cleavage of the aryl C-H bond is reversible and that the higher rates observed with the 2,9-Me<sub>2</sub>phen ligand is due to a more thermodynamically favorable oxidative addition of aryl C-H bonds.


2020 ◽  
Author(s):  
Darshak Mota ◽  
Neel Zadafiya ◽  
Jinan Fiaidhi

Java Spring is an application development framework for enterprise Java. It is an open source platform which is used to develop robust Java application easily. Spring can also be performed using MVC structure. The MVC architecture is based on Model View and Controller techniques, where the project structure or code is divided into three parts or sections which helps to categorize the code files and other files in an organized form. Model, View and Controller code are interrelated and often passes and fetches information from each other without having to put all code in a single file which can make testing the program easy. Testing the application while and after development is an integral part of the Software Development Life Cycle (SDLC). Different techniques have been used to test the web application which is developed using Java Spring MVC architecture. And compares the results among all the three different techniques used to test the web application.


2013 ◽  
Vol 37 (9) ◽  
pp. 1290
Author(s):  
Shengyi CHEN ◽  
Xinfu LIU ◽  
Yongjiang XU ◽  
Zhiliang LIU ◽  
Xuezhou LIU ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document