Quarter-Millimeter Propagating Plasmons in Thin-Gold-Film-Based Waveguides for Visible Spectral Range

2020 ◽  
Vol 38 (17) ◽  
pp. 4794-4800
Author(s):  
Vladimir V. Kornienko ◽  
Alina A. Dobronosova ◽  
Anton I. Ignatov ◽  
Michail Andronik ◽  
Ilya A. Rodionov ◽  
...  
2019 ◽  
Author(s):  
Kam Sang Kwok ◽  
Yuxuan Wang ◽  
Michael Cao ◽  
Hao Shen ◽  
Weinan Xu ◽  
...  

<p>The local structure and geometry of catalytic interfaces can influence the selectivity of chemical reactions. Here, using a pre-strained polymer, we uniaxially compress a thin gold film to form a nano-folded catalyst. We observe two kinds of folds and can tune the ratio of loose to tight folds by varying the extent of pre-strain in the polymer. We characterize the nano-folded catalysts using x-ray diffraction, scanning, and transmission electron microscopy. We observe grain reorientation and coarsening in the nano-folded gold catalysts. Electroreduction of carbon dioxide with these nano-folded catalysts reveals an enhancement of Faradaic efficiency for carbon monoxide formation by a factor of about four. This result suggests that electrolyte mass transport limitations and an increase of the local pH in the tight folds of the catalyst outweigh the effects of alterations in grain characteristics. Together, our studies demonstrate that nano-folded geometries can significantly alter grain characteristics, mass transport, and catalytic selectivity. </p>


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2758
Author(s):  
Alberto Taffelli ◽  
Sandra Dirè ◽  
Alberto Quaranta ◽  
Lucio Pancheri

Photodetectors based on transition metal dichalcogenides (TMDs) have been widely reported in the literature and molybdenum disulfide (MoS2) has been the most extensively explored for photodetection applications. The properties of MoS2, such as direct band gap transition in low dimensional structures, strong light–matter interaction and good carrier mobility, combined with the possibility of fabricating thin MoS2 films, have attracted interest for this material in the field of optoelectronics. In this work, MoS2-based photodetectors are reviewed in terms of their main performance metrics, namely responsivity, detectivity, response time and dark current. Although neat MoS2-based detectors already show remarkable characteristics in the visible spectral range, MoS2 can be advantageously coupled with other materials to further improve the detector performance Nanoparticles (NPs) and quantum dots (QDs) have been exploited in combination with MoS2 to boost the response of the devices in the near ultraviolet (NUV) and infrared (IR) spectral range. Moreover, heterostructures with different materials (e.g., other TMDs, Graphene) can speed up the response of the photodetectors through the creation of built-in electric fields and the faster transport of charge carriers. Finally, in order to enhance the stability of the devices, perovskites have been exploited both as passivation layers and as electron reservoirs.


Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 931
Author(s):  
Shuang Liang ◽  
Ran Gao ◽  
Mengying Zhang ◽  
Ning Xue ◽  
Zhi-mei Qi

A gold-silver alloy film based spectral surface plasmon resonance imaging (SPRi) sensor has been prepared for in-situ quantitative detection of biochemical analytes at the sensor surface. This novel sensor has lower detection cost yet higher sensitivity relative to the conventional counterpart with a gold film. Using the laboratory-made multifunctional SPR sensing platform, both the resonant color images and the resonant spectra for the Au-Ag alloy film were measured at different incident angles. The quantitative relationship between the resonant wavelength and the average hue of corresponding resonant color image was established. With this relationship the most hue-sensitive spectral range was determined. After setting the initial resonant wavelength in the hue-sensitive spectral range, the refractive-index sensitivity of the Au-Ag alloy film based SPRi sensor was measured as Δhue/Δnc = 29,879/RIU, being 8 times higher than that obtained with the gold-film SPRi sensor. The immunodetection of benzo(a)pyrene (BaP) in water was fulfilled using the Au-Ag alloy film based SPRi sensor. The average hue of the SPR color image linearly increases with increasing the BaP concentration up to C = 0.5 μg/L and the slope is Δhue/ΔC = 132.2/(μg/L). The sensor is responsive to a change of BaP concentration as low as ΔC = 0.01 μg/L.


2002 ◽  
Vol 80 (20) ◽  
pp. 3715-3717 ◽  
Author(s):  
Ulrich C. Fischer ◽  
Eugene Bortchagovsky ◽  
Jörg Heimel ◽  
René T. Hanke

2002 ◽  
Vol 34 (3) ◽  
pp. 199-202 ◽  
Author(s):  
K. Venkatakrishnan ◽  
B. Tan ◽  
B.K.A. Ngoi

Vacuum ◽  
1994 ◽  
Vol 45 (2-3) ◽  
pp. 299-301 ◽  
Author(s):  
L. Stobiński ◽  
R. Duś

Sign in / Sign up

Export Citation Format

Share Document