Near Vacuum Gas Damping in MEMS: Simplified Modeling

2017 ◽  
Vol 26 (3) ◽  
pp. 632-642 ◽  
Author(s):  
Patrick Fedeli ◽  
Attilio Frangi ◽  
Giacomo Laghi ◽  
Giacomo Langfelder ◽  
Gabriele Gattere
Proceedings ◽  
2020 ◽  
Vol 63 (1) ◽  
pp. 41
Author(s):  
Hanae El Fakiri ◽  
Lahoucine Ouhsaine ◽  
Abdelmajid El Bouardi

The thermal dynamic behavior of buildings represents an important aspect of the energy efficiency and thermal comfort of the indoor environment. For this, phase change material (PCM) wallboards integrated into building envelopes play an important role in stabilizing the temperature of the human comfort condition. This article provides an assessment of the thermal behavior of a “bi-zone” building cell, which was built based on high-energy performance (HEP) standards and heated by a solar water heater system through a hydronic circuit. The current study is based on studying the dynamic thermal behavior, with and without implantation of PCMs on envelope structure, using a simplified modeling approach. The evolution of the average air temperature was first evaluated as a major indicator of thermal comfort. Then, an evaluation of the thermal behavior’s dynamic profile was carried out in this study, which allowed for the determination of the PCM rate anticipation in the thermal comfort of the building cell.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2566
Author(s):  
Boris A. Boom ◽  
Alessandro Bertolini ◽  
Eric Hennes ◽  
Johannes F. J. van den Brand

We present a novel analysis of gas damping in capacitive MEMS transducers that is based on a simple analytical model, assisted by Monte-Carlo simulations performed in Molflow+ to obtain an estimate for the geometry dependent gas diffusion time. This combination provides results with minimal computational expense and through freely available software, as well as insight into how the gas damping depends on the transducer geometry in the molecular flow regime. The results can be used to predict damping for arbitrary gas mixtures. The analysis was verified by experimental results for both air and helium atmospheres and matches these data to within 15% over a wide range of pressures.


2012 ◽  
Vol 446-449 ◽  
pp. 458-462
Author(s):  
Jie Hu ◽  
Jia Quan Feng ◽  
Xi Nong Zhang

This paper proposed a simplified modeling method of reinforced concrete based on the equivalence of dynamic stiffness, the parameters of simplified model were modified to make the error of nature frequency between reference model and simplified model as small as possible, and an appropriate optimization function was designed. The essentiality of the proposed method is parameter optimization, with the advantages such as fewer elements and calculation assumption. The numerical simulation result indicated that this optimization method is suitable for the dynamic response analysis of complicated reinforced concrete structure.


1980 ◽  
Vol 106 (1) ◽  
pp. 71-84
Author(s):  
Uzi Landau ◽  
Yaron Fedorowicz
Keyword(s):  

2007 ◽  
Vol 129 (03) ◽  
pp. 24-29 ◽  
Author(s):  
Arthur C. Ratzel

This article discusses growing role of silicon micro-electron-mechanical systems (MEMS) technology in automotive and consumer products, telecommunications, radio-frequency applications, and medical care. The article also highlights that silicon-based MEMS devices must be constructed in clean rooms, such as one at Sandia's Microelectronics Development laboratory. According to engineers, the search for an in-depth understanding of wear mechanisms in dynamic silicon MEMS is expected to drive an ambitious wave of leading-edge research into microscale science and engineering, distinct from that which prevailed at the mesoscale. It has been found that gas damping between MEMS structures and the substrate, within the sealed package, can cause serious nonlinearities. While this doesn't lead to failure in the classic sense, it may make it harder to close a switch. On the plus side, gas damping can provide a cushion that enables a MEMS device to survive surprisingly high shock loads.


2010 ◽  
Author(s):  
Shanbin Lu ◽  
jinyan Wu ◽  
Junyuan Zhang ◽  
Yizhou Fan
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document