scholarly journals Surface Passivation of Perovskite Film by Small Molecule Infiltration for Improved Efficiency of Perovskite Solar Cells

2016 ◽  
Vol 8 (5) ◽  
pp. 1-7 ◽  
Author(s):  
Ming Xu ◽  
Jing Feng ◽  
Xia-Li Ou ◽  
Zhen-Yu Zhang ◽  
Yi-Fan Zhang ◽  
...  
2021 ◽  
Vol 9 (10) ◽  
pp. 3642-3651
Author(s):  
Jihyun Lim ◽  
Do-Yeong Choi ◽  
Woongsik Jang ◽  
Hyeon-Ho Choi ◽  
Yun-Hi Kim ◽  
...  

Small molecule organic material, tris(4-(1-phenyl-1H-benzo[d]imidazole)phenyl)phosphine oxide (TIPO) was newly synthesised and introduced into an n-type interlayer in planar perovskite solar cells for effective electron transport.


2021 ◽  
Author(s):  
Kun-Mu Lee ◽  
Jui-Yu Yang ◽  
Ping-Sheng Lai ◽  
Ke-Jyun Luo ◽  
Ting Yu Yang ◽  
...  

A new cyclopentadithiophene (CPDT)-based organic small molecule serves as an efficient dopant-free hole transporting material (HTM) for perovskite solar cells (PSCs). Upon incorporation of two carbazole groups, the resulting CPDT-based...


Author(s):  
Qian Chen ◽  
Puhang Chen ◽  
Hongyuan Liu ◽  
Xiaorui Liu

Computational actuation on design of small-molecule triphenylamine derivative-based hole-transporting materials (HTMs) is a high-efficient way to acquire potential HTMs for perovskite solar cells (PSCs). In the work, on basis of...


2021 ◽  
Author(s):  
Ran Zhao ◽  
Kai Zhang ◽  
Jiahao Zhu ◽  
Shuang Xiao ◽  
Wei Xiong ◽  
...  

Interface passivation is of the pivot to achieve high-efficiency organic metal halide perovskite solar cells (PSCs). Atomic layer deposition (ALD) of wide band gap oxides has recently shown great potential...


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Shun-Chang Liu ◽  
Chen-Min Dai ◽  
Yimeng Min ◽  
Yi Hou ◽  
Andrew H. Proppe ◽  
...  

AbstractIn lead–halide perovskites, antibonding states at the valence band maximum (VBM)—the result of Pb 6s-I 5p coupling—enable defect-tolerant properties; however, questions surrounding stability, and a reliance on lead, remain challenges for perovskite solar cells. Here, we report that binary GeSe has a perovskite-like antibonding VBM arising from Ge 4s-Se 4p coupling; and that it exhibits similarly shallow bulk defects combined with high stability. We find that the deep defect density in bulk GeSe is ~1012 cm−3. We devise therefore a surface passivation strategy, and find that the resulting GeSe solar cells achieve a certified power conversion efficiency of 5.2%, 3.7 times higher than the best previously-reported GeSe photovoltaics. Unencapsulated devices show no efficiency loss after 12 months of storage in ambient conditions; 1100 hours under maximum power point tracking; a total ultraviolet irradiation dosage of 15 kWh m−2; and 60 thermal cycles from −40 to 85 °C.


Sign in / Sign up

Export Citation Format

Share Document