scholarly journals Accounting for the Dependence of Coil Sensitivity on Sample Thickness and Lift-Off in Inductively Coupled Photoconductance Measurements

2019 ◽  
Vol 9 (6) ◽  
pp. 1563-1574 ◽  
Author(s):  
Lachlan E. Black ◽  
Daniel H. Macdonald
2020 ◽  
Vol 11 ◽  
pp. 41-50 ◽  
Author(s):  
Markus Tautz ◽  
Maren T Kuchenbrod ◽  
Joachim Hertkorn ◽  
Robert Weinberger ◽  
Martin Welzel ◽  
...  

Roughening by anisotropic etching of N-face gallium nitride is the key aspect in today’s production of blue and white light emitting diodes (LEDs). Both surface area and number of surface angles are increased, facilitating light outcoupling from the LED chip. The structure of a GaN layer stack grown by metal organic chemical vapour deposition (MOCVD) was varied in the unintentionally doped u-GaN bulk region. Different sequences of 2D and 3D grown layers led to a variation in dislocation density, which was monitored by photoluminescence microscopy (PLM) and X-ray diffraction (XRD). Thin-film processing including laser lift off (LLO) was applied. The influence of epitaxial changes on the N-face etch kinetics was determined in aqueous KOH solution at elevated temperature. Inductively-coupled plasma optical emission spectroscopy (ICP-OES) was used to measure the etch progress in small time increments with high precision. Thereby, the disadvantages of other techniques such as determination of weight loss or height difference were overcome, achieving high accuracy and reproducibility.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Gavin Lennon ◽  
Shannon Willox ◽  
Ragini Ramdas ◽  
Scott J. Funston ◽  
Matthew Klun ◽  
...  

During the construction of recording head devices, corrosion of metal features and subsequent deposition of corrosion by-products have been observed. Previous studies have determined that the use of N-methylpyrrolidone (NMP) may be a contributing factor. In this study, we report the use of a novel multiplatform analytical approach comprising of pH, liquid chromatography/UV detection (LC/UV), inductively coupled plasma optical emission spectroscopy (ICP-OES), and LC/mass spectrometry (LC/MS) to demonstrate that reaction conditions mimicking those of general photoresist removal processes can invoke the oxidation of NMP during the photolithography lift-off process. For the first time, we have confirmed that the oxidation of NMP lowers the pH, facilitating the dissolution of transition metals deposited on wafer substrates during post-mask and pre-lift-off processes in microelectronic fabrication. This negatively impacts upon the performance of the microelectronic device. Furthermore, it was shown that, by performing the process in an inert atmosphere, the oxidation of NMP was suppressed and the pH was stabilized, suggesting an affordable modification of the photolithography lift-off stage to enhance the quality of recording heads. This novel study has provided key data that may have a significant impact on current and future fabrication process design, optimization, and control. Results here suggest the inclusion of pH as a key process input variable (KPIV) during the design of new photoresist removal processes.


Author(s):  
Xiaobai Meng ◽  
Mingyang Lu ◽  
Wuliang Yin ◽  
Abdeldjalil Bennecer ◽  
Katherine Kirk

For the electromagnetic eddy current testing, various methods have been proposed for reducing the lift-off error on the measurement of samples. In this paper, instead of eliminating the measurement error caused by the lift-off effect, an algorithm has been proposed to directly measure the lift-off distance between the sensor and non-magnetic conductive plates. The algorithm is based on a sample-independent inductance (SII) feature. That is, under high working frequencies, the inductance is found sensitive to the lift-off distance and independent of the test piece under an optimal single high working frequency (43.87 kHz). Furthermore, the predicted lift-off distance is used for the thickness prediction of the non-magnetic conductive samples using an iterative method. Considering the eddy current skin depth, the thickness prediction is operated under a single lower frequency (0.20 kHz). As the inductance has different sensitivities to the lift-off and thickness, the prediction error of the sample thickness is different from that of the lift-off distance. From the experiments on three different nonmagnetic samples – aluminium, copper, and brass, the maximum prediction error of the lift-off distance and sample thickness is 1.1 mm and 5.42 % respectively at the lift-off of 12.0 mm.


Author(s):  
Jayesh Bellare

Seeing is believing, but only after the sample preparation technique has received a systematic study and a full record is made of the treatment the sample gets.For microstructured liquids and suspensions, fast-freeze thermal fixation and cold-stage microscopy is perhaps the least artifact-laden technique. In the double-film specimen preparation technique, a layer of liquid sample is trapped between 100- and 400-mesh polymer (polyimide, PI) coated grids. Blotting against filter paper drains excess liquid and provides a thin specimen, which is fast-frozen by plunging into liquid nitrogen. This frozen sandwich (Fig. 1) is mounted in a cooling holder and viewed in TEM.Though extremely promising for visualization of liquid microstructures, this double-film technique suffers from a) ireproducibility and nonuniformity of sample thickness, b) low yield of imageable grid squares and c) nonuniform spatial distribution of particulates, which results in fewer being imaged.


Author(s):  
H. Lin ◽  
D. P. Pope

During a study of mechanical properties of recrystallized B-free Ni3Al single crystals, regularly spaced parallel traces within individual grains were discovered on the surfaces of thin recrystallized sheets, see Fig. 1. They appeared to be slip traces, but since we could not find similar observations in the literature, a series of experiments was performed to identify them. We will refer to them “traces”, because they contain some, if not all, of the properties of slip traces. A variety of techniques, including the Electron Backscattering Pattern (EBSP) method, was used to ascertain the composition, geometry, and crystallography of these traces. The effect of sample thickness on their formation was also investigated.In summary, these traces on the surface of recrystallized Ni3Al have the following properties:1.The chemistry and crystallographic orientation of the traces are the same as the bulk. No oxides or other second phases were observed.2.The traces are not grooves caused by thermal etching at previous locations of grain boundaries.3.The traces form after recrystallization (because the starting Ni3Al is a single crystal).4.For thicknesses between 50 μm and 720 μm, the density of the traces increases as the sample thickness decreases. Only one set of “protrusion-like” traces is visible in a given grain on the thicker samples, but multiple sets of “cliff-like” traces are visible on the thinner ones (See Fig. 1 and Fig. 2).5.They are linear and parallel to the traces of {111} planes on the surface, see Fig. 3.6.Some of the traces terminate within the interior of the grains, and the rest of them either terminate at or are continuous across grain boundaries. The portion of latter increases with decreasing thickness.7.The grain size decreases with decreasing thickness, the decrease is more pronounced when the grain size is comparable with the thickness, Fig. 4.8.Traces also formed during the recrystallization of cold-rolled polycrystalline Cu thin sheets, Fig. 5.


Nature ◽  
2006 ◽  
Author(s):  
Geoff Brumfiel
Keyword(s):  

Nature ◽  
2006 ◽  
Author(s):  
Killugudi Jayaraman
Keyword(s):  

2000 ◽  
Vol 10 (PR5) ◽  
pp. Pr5-399-Pr5-402
Author(s):  
V. E. Fortov ◽  
A. P. Nefedov ◽  
V. A. Sinel'shchikov ◽  
A. V. Zobnin ◽  
A. D. Usachev

Sign in / Sign up

Export Citation Format

Share Document