Analysis of Statistical Time-Domain Features Effectiveness in Identification of Bearing Faults From Vibration Signal

2017 ◽  
Vol 17 (17) ◽  
pp. 5618-5625 ◽  
Author(s):  
B. R. Nayana ◽  
P. Geethanjali
2021 ◽  
Vol 17 (1) ◽  
pp. 155014772199170
Author(s):  
Jinping Yu ◽  
Deyong Zou

The speed of drilling has a great relationship with the rock breaking efficiency of the bit. Based on the above background, the purpose of this article is to predict the position of shallow bit based on the vibration signal monitoring of bit broken rock. In this article, first, the mechanical research of drill string is carried out; the basic changes of the main mechanical parameters such as the axial force, torque, and bending moment of drill string are clarified; and the dynamic equilibrium equation theory of drill string system is analyzed. According to the similarity criterion, the corresponding relationship between drilling process parameters and laboratory test conditions is determined. Then, the position monitoring test system of the vibration bit is established. The acoustic emission signal and the drilling force signal of the different positions of the bit in the process of vibration rock breaking are collected synchronously by the acoustic emission sensor and the piezoelectric force sensor. Then, the denoised acoustic emission signal and drilling force signal are analyzed and processed. The mean value, variance, and mean square value of the signal are calculated in the time domain. The power spectrum of the signal is analyzed in the frequency domain. The signal is decomposed by wavelet in the time and frequency domains, and the wavelet energy coefficients of each frequency band are extracted. Through the wavelet energy coefficient calculated by the model, combined with the mean, variance, and mean square error of time-domain signal, the position of shallow buried bit can be analyzed and predicted. Finally, by fitting the results of indoor experiment and simulation experiment, it can be seen that the stress–strain curve of rock failure is basically the same, and the error is about 3.5%, which verifies the accuracy of the model.


2011 ◽  
Vol 2-3 ◽  
pp. 176-181
Author(s):  
Yong Jun Shen ◽  
Guang Ming Zhang ◽  
Shao Pu Yang ◽  
Hai Jun Xing

Two de-noising methods, named as the averaging method in Gabor transform domain (AMGTD) and the adaptive filtering method in Gabor transform domain (AFMGTD), are presented in this paper. These two methods are established based on the correlativity of the source signals and the background noise in time domain and Gabor transform domain, that is to say, the uncorrelated source signals and background noise in time domain would still be uncorrelated in Gabor transform domain. The construction and computation scheme of these two methods are investigated. The de-noising performances are illustrated by some simulation signals, and the wavelet transform is used to compare with these two new de-noising methods. The results show that these two methods have better de-noising performance than the wavelet transform, and could reduce the background noise in the vibration signal more effectively.


2018 ◽  
Vol 17 (5) ◽  
pp. 1192-1212 ◽  
Author(s):  
Faris Elasha ◽  
Matthew Greaves ◽  
David Mba

Helicopter gearboxes significantly differ from other transmission types and exhibit unique behaviours that reduce the effectiveness of traditional fault diagnostics methods. In addition, due to lack of redundancy, helicopter transmission failure can lead to catastrophic accidents. Bearing faults in helicopter gearboxes are difficult to discriminate due to the low signal-to-noise ratio in the presence of gear vibration. In addition, the vibration response from the planet gear bearings must be transmitted via a time-varying path through the ring gear to externally mounted accelerometers, which cause yet further bearing vibration signal suppression. This research programme has resulted in the successful proof of concept of a broadband wireless transmission sensor that incorporates power scavenging while operating within a helicopter gearbox. In addition, this article investigates the application of signal separation techniques in detection of bearing faults within the epicyclic module of a large helicopter (CS-29) main gearbox using vibration and acoustic emissions. It compares their effectiveness for various operating conditions. Three signal processing techniques, including an adaptive filter, spectral kurtosis and envelope analysis, were combined for this investigation. In addition, this research discusses the feasibility of using acoustic emission for helicopter gearbox monitoring.


2022 ◽  
Vol 64 (1) ◽  
pp. 38-44
Author(s):  
Maosheng Gao ◽  
Zhiwu Shang ◽  
Wanxiang Li ◽  
Shiqi Qian ◽  
Yan Yu

A sudden fault in a rolling bearing (RB) results in a large amount of downtime, which increases the cost of operation and maintenance. In this paper, a real-time diagnosis and trend prediction method for RBs is proposed. In this method, a novel resampling dynamic time warping (RDTW) algorithm is presented and two new time-domain indicators (NTDIRs) called TALAP and TRCKT are defined, which can describe the wear degree and trend of an RB inner ring wear fault (IRWF). TALAP and TRCKT are proposed by comprehensively considering the stability and sensitivity of existing time-domain indicators (TDIRs). First, RDTW is used to align the healthy vibration signal with the fault vibration signal. Then, the residual signal that can be used to monitor the running condition is obtained. TALAP and TRCKT of the residual signal are calculated to judge the degree of wear. When the wear limit is reached, a fault alarm is sent out and the downtime needed for replacement can be accurately indicated. The experimental results show that the method can perform accurate diagnosis and trend prediction of inner ring wear faults of RBs.


2020 ◽  
Vol 10 (18) ◽  
pp. 6359 ◽  
Author(s):  
Shuangjie Liu ◽  
Jiaqi Xie ◽  
Changqing Shen ◽  
Xiaofeng Shang ◽  
Dong Wang ◽  
...  

Mechanical equipment fault detection is critical in industrial applications. Based on vibration signal processing and analysis, the traditional fault diagnosis method relies on rich professional knowledge and artificial experience. Achieving accurate feature extraction and fault diagnosis is difficult using such an approach. To learn the characteristics of features from data automatically, a deep learning method is used. A qualitative and quantitative method for rolling bearing faults diagnosis based on an improved convolutional deep belief network (CDBN) is proposed in this study. First, the original vibration signal is converted to the frequency signal with the fast Fourier transform to improve shallow inputs. Second, the Adam optimizer is introduced to accelerate model training and convergence speed. Finally, the model structure is optimized. A multi-layer feature fusion learning structure is put forward wherein the characterization capabilities of each layer can be fully used to improve the generalization ability of the model. In the experimental verification, a laboratory self-made bearing vibration signal dataset was used. The dataset included healthy bearings, nine single faults of different types and sizes, and three different types of composite fault signals. The results of load 0 kN and 1 kN both indicate that the proposed model has better diagnostic accuracy, with an average of 98.15% and 96.15%, compared with the traditional stacked autoencoder, artificial neural network, deep belief network, and standard CDBN. With improved diagnostic accuracy, the proposed model realizes reliable and effective qualitative and quantitative diagnosis of bearing faults.


Entropy ◽  
2020 ◽  
Vol 22 (4) ◽  
pp. 478 ◽  
Author(s):  
Jiajin Qi ◽  
Xu Gao ◽  
Nantian Huang

The fault samples of high voltage circuit breakers are few, the vibration signals are complex, the existing research methods cannot extract the effective information in the features, and it is easy to overfit, slow training, and other problems. To improve the efficiency of feature extraction of a circuit breaker vibration signal and the accuracy of circuit breaker state recognition, a Light Gradient Boosting Machine (LightGBM) method based on time-domain feature extraction with multi-type entropy features for mechanical fault diagnosis of the high voltage circuit breaker is proposed. First, the original vibration signal of the high voltage circuit breaker is segmented in the time domain; then, 16 features including 5 kinds of entropy features are extracted directly from each part of the original signal after time-domain segmentation, and the original feature set is constructed. Second, the Split importance value of each feature is calculated, and the optimal feature subset is determined by the forward feature selection, taking the classification accuracy of LightGBM as the decision variable. After that, the LightGBM classifier is constructed based on the feature vector of the optimal feature subset, which can accurately distinguish the mechanical fault state of the high voltage circuit breaker. The experimental results show that the new method has the advantages of high efficiency of feature extraction and high accuracy of fault identification.


Sign in / Sign up

Export Citation Format

Share Document