scholarly journals Planetary bearing defect detection in a commercial helicopter main gearbox with vibration and acoustic emission

2018 ◽  
Vol 17 (5) ◽  
pp. 1192-1212 ◽  
Author(s):  
Faris Elasha ◽  
Matthew Greaves ◽  
David Mba

Helicopter gearboxes significantly differ from other transmission types and exhibit unique behaviours that reduce the effectiveness of traditional fault diagnostics methods. In addition, due to lack of redundancy, helicopter transmission failure can lead to catastrophic accidents. Bearing faults in helicopter gearboxes are difficult to discriminate due to the low signal-to-noise ratio in the presence of gear vibration. In addition, the vibration response from the planet gear bearings must be transmitted via a time-varying path through the ring gear to externally mounted accelerometers, which cause yet further bearing vibration signal suppression. This research programme has resulted in the successful proof of concept of a broadband wireless transmission sensor that incorporates power scavenging while operating within a helicopter gearbox. In addition, this article investigates the application of signal separation techniques in detection of bearing faults within the epicyclic module of a large helicopter (CS-29) main gearbox using vibration and acoustic emissions. It compares their effectiveness for various operating conditions. Three signal processing techniques, including an adaptive filter, spectral kurtosis and envelope analysis, were combined for this investigation. In addition, this research discusses the feasibility of using acoustic emission for helicopter gearbox monitoring.

2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Ramtin Tabatabaei ◽  
Aref Aasi ◽  
Seyed Mohammad Jafari ◽  
Enrico Ciulli

Early detection of angular contact bearings, one of the important subsets of rolling element bearings (REBs), is critical for applications of high accuracy and high speed performance. In this study, acoustic emission (AE) method was applied to an experimental case with defects on angular contact bearing. AE signals were collected by AE sensors in different operating conditions. Signal to noise ratio (SNR) was calculated by kurtosis to entropy ratio (KER), then acquired signals were denoised by empirical mode decomposition (EMD) method, and optimal intrinsic mode function (IMF) was selected by the proposed method. Finally, envelope spectrum was applied to the denoised signals, and frequencies of defects were obtained in different rotating speeds, loadings, and defect sizes. For the first time, a small defect with width of 0.3 mm and loading of 475 N was detected in early stage of 0.04 KHz. Moreover, a comparison between theoretical and extracted defect frequencies suggested that our method successfully detected localized defects in both inner and outer race. Our results show promise in detecting small size defects in REBs.


2012 ◽  
Vol 433-440 ◽  
pp. 7240-7246
Author(s):  
Can Yi Du ◽  
Kang Ding ◽  
Zhi Jian Yang ◽  
Cui Li Yang

Misfire is a common fault which affects the engine performances. Because the signal-to-noise ratio of torsional vibration signal is high, torsional vibration test and analysis for the engine were performed in a variety of operating conditions, including healthy condition and single-cylinder misfire condition. In order to improve the accuracy of analysis, energy centrobaric correction method was used to correct the amplitude. Taking the corrected amplitude of main order as the fault feature, and then a BP neural-network diagnostic model can be established for misfire diagnosis. The result shows that the method of combining torsional vibration signal analysis and neural-network can diagnose engine misfire fault correctly.


2014 ◽  
Vol 136 (3) ◽  
Author(s):  
Sidra Khanam ◽  
J. K. Dutt ◽  
N. Tandon

Vibration analysis has been widely accepted as a common and reliable method for bearing fault identification, however, the presence of noise in the measured signal poses the maximum amount of difficulty. Therefore, for the clearer detection of defect frequencies related to bearing faults, a denoising technique based on the Kalman filtering algorithm is presented in this paper. The Kalman filter yields a linear, unbiased, and minimum mean error variance recursive algorithm to optimally estimate the unknown states of a dynamic system from noisy data taken at discrete real time intervals. The dynamics of a rotor bearing system is presented through a linear model, where displacement and velocity vectors are chosen as states of the system. Process noise and measurement noise in the equations of motion take into account the modeling inaccuracies and vibration from other sources, respectively. The covariance matrix of the process noise has been obtained through the transfer function approach. The efficiency of the proposed technique is validated through experiments. Periodic noise and random noises obeying the white Gaussian, colored Gaussian and non-Gaussian distribution have been simulated and mixed with a clean experimental signal in order to study the efficiency of the standard Kalman filter under various noisy environments. Additionally, external vibrations to the test rig have been imparted through an electromechanical shaker. The results indicate an improvement in the signal to noise ratio, resulting in the clear identification of characteristic defect frequencies after passing the signal through the Kalman filter. The authors find that there is sufficient potential in using the Kalman filter as an effective tool to denoise the bearing vibration signal.


2016 ◽  
Vol 16 (3) ◽  
pp. 149-159 ◽  
Author(s):  
Haifeng Huang ◽  
Huajiang Ouyang ◽  
Hongli Gao ◽  
Liang Guo ◽  
Dan Li ◽  
...  

Abstract Detection of incipient degradation demands extracting sensitive features accurately when signal-to-noise ratio (SNR) is very poor, which appears in most industrial environments. Vibration signals of rolling bearings are widely used for bearing fault diagnosis. In this paper, we propose a feature extraction method that combines Blind Source Separation (BSS) and Spectral Kurtosis (SK) to separate independent noise sources. Normal, and incipient fault signals from vibration tests of rolling bearings are processed. We studied 16 groups of vibration signals (which all display an increase in kurtosis) of incipient degradation after they are processed by a BSS filter. Compared with conventional kurtosis, theoretical studies of SK trends show that the SK levels vary with frequencies and some experimental studies show that SK trends of measured vibration signals of bearings vary with the amount and level of impulses in both vibration and noise signals due to bearing faults. It is found that the peak values of SK increase when vibration signals of incipient faults are processed by a BSS filter. This pre-processing by a BSS filter makes SK more sensitive to impulses caused by performance degradation of bearings.


Author(s):  
Faris Elasha ◽  
Cristobal Ruiz-Carcel ◽  
David Mba

Bearing faults detection at the earliest stages is vital in avoiding future catastrophic failures. Many traditional techniques have been established and utilized in detecting bearing faults, though, these diagnostic techniques are not always successful when the bearing faults take place in gearboxes where the vibration signal is complex; under such circumstances it may be necessary to separate the bearing signal from the complex signal. The objective of this paper is to assess the effectiveness of an adaptive filter algorithms compared to a Spectral Kurtosis (SK) algorithm in diagnosing a bearing defects in a gearbox. Two adaptive filters have been used for the purpose of bearing signal separation, these algorithms were Least Mean Square (LMS) and Fast Block LMS (FBLMS) algorithms. These algorithms were applied to identify a bearing defects in a gearbox employed for an aircraft control system for which endurance tests were performed. The results show that the LMS algorithm is capable of detecting the bearing fault earlier in comparison to the other algorithms.


Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4240
Author(s):  
Daniel M. Hochman ◽  
Sevda Gharehbaghi ◽  
Daniel C. Whittingslow ◽  
Omer T. Inan

Joint acoustic emission (JAE) sensing has recently proven to be a viable technique for non-invasive quantification indicating knee joint health. In this work, we adapt the acoustic emission sensing method to measure the JAEs of the wrist—another joint commonly affected by injury and degenerative disease. JAEs of seven healthy volunteers were recorded during wrist flexion-extension and rotation with sensitive uniaxial accelerometers placed at eight locations around the wrist. The acoustic data were bandpass filtered (150 Hz–20 kHz). The signal-to-noise ratio (SNR) was used to quantify the strength of the JAE signals in each recording. Then, nine audio features were extracted, and the intraclass correlation coefficient (ICC) (model 3,k), coefficients of variability (CVs), and Jensen–Shannon (JS) divergence were calculated to evaluate the interrater repeatability of the signals. We found that SNR ranged from 4.1 to 9.8 dB, intrasession and intersession ICC values ranged from 0.629 to 0.886, CVs ranged from 0.099 to 0.241, and JS divergence ranged from 0.18 to 0.20, demonstrating high JAE repeatability and signal strength at three locations. The volunteer sample size is not large enough to represent JAE analysis of a larger population, but this work will lay a foundation for future work in using wrist JAEs to aid in diagnosis and treatment tracking of musculoskeletal pathologies and injury in wearable systems.


2021 ◽  
Vol 17 (1) ◽  
pp. 155014772199170
Author(s):  
Jinping Yu ◽  
Deyong Zou

The speed of drilling has a great relationship with the rock breaking efficiency of the bit. Based on the above background, the purpose of this article is to predict the position of shallow bit based on the vibration signal monitoring of bit broken rock. In this article, first, the mechanical research of drill string is carried out; the basic changes of the main mechanical parameters such as the axial force, torque, and bending moment of drill string are clarified; and the dynamic equilibrium equation theory of drill string system is analyzed. According to the similarity criterion, the corresponding relationship between drilling process parameters and laboratory test conditions is determined. Then, the position monitoring test system of the vibration bit is established. The acoustic emission signal and the drilling force signal of the different positions of the bit in the process of vibration rock breaking are collected synchronously by the acoustic emission sensor and the piezoelectric force sensor. Then, the denoised acoustic emission signal and drilling force signal are analyzed and processed. The mean value, variance, and mean square value of the signal are calculated in the time domain. The power spectrum of the signal is analyzed in the frequency domain. The signal is decomposed by wavelet in the time and frequency domains, and the wavelet energy coefficients of each frequency band are extracted. Through the wavelet energy coefficient calculated by the model, combined with the mean, variance, and mean square error of time-domain signal, the position of shallow buried bit can be analyzed and predicted. Finally, by fitting the results of indoor experiment and simulation experiment, it can be seen that the stress–strain curve of rock failure is basically the same, and the error is about 3.5%, which verifies the accuracy of the model.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2042
Author(s):  
Redha Boubenia ◽  
Patrice Le Moal ◽  
Gilles Bourbon ◽  
Emmanuel Ramasso ◽  
Eric Joseph

The paper deals with a capacitive micromachined ultrasonic transducer (CMUT)-based sensor dedicated to the detection of acoustic emissions from damaged structures. This work aims to explore different ways to improve the signal-to-noise ratio and the sensitivity of such sensors focusing on the design and packaging of the sensor, electrical connections, signal processing, coupling conditions, design of the elementary cells and operating conditions. In the first part, the CMUT-R100 sensor prototype is presented and electromechanically characterized. It is mainly composed of a CMUT-chip manufactured using the MUMPS process, including 40 circular 100 µm radius cells and covering a frequency band from 310 kHz to 420 kHz, and work on the packaging, electrical connections and signal processing allowed the signal-to-noise ratio to be increased from 17 dB to 37 dB. In the second part, the sensitivity of the sensor is studied by considering two contributions: the acoustic-mechanical one is dependent on the coupling conditions of the layered sensor structure and the mechanical-electrical one is dependent on the conversion of the mechanical vibration to electrical charges. The acoustic-mechanical sensitivity is experimentally and numerically addressed highlighting the care to be taken in implementation of the silicon chip in the brass housing. Insertion losses of about 50% are experimentally observed on an acoustic test between unpackaged and packaged silicon chip configurations. The mechanical-electrical sensitivity is analytically described leading to a closed-form amplitude of the detected signal under dynamic excitation. Thus, the influence of geometrical parameters, material properties and operating conditions on sensitivity enhancement is clearly established: such as smaller electrostatic air gap, and larger thickness, Young’s modulus and DC bias voltage.


Author(s):  
A. Albers ◽  
M. Dickerhof

The application of Acoustic Emission technology for monitoring rolling element or hydrodynamic plain bearings has been addressed by several authors in former times. Most of these investigations took place under idealized conditions, to allow the concentration on one single source of emission, typically recorded by means of a piezoelectric sensor. This can be achieved by either eliminating other sources in advance or taking measures to shield them out (e. g. by placing the acoustic emission sensor very close to the source of interest), so that in consequence only one source of structure-born sound is present in the signal. With a practical orientation this is often not possible. In point of fact, a multitude of potential sources of emission can be worth considering, unfortunately superimposing one another. The investigations reported in this paper are therefore focused on the simultaneous monitoring of both bearing types mentioned above. Only one piezoelectric acoustic emission sensor is utilized, which is placed rather far away from the monitored bearings. By derivation of characteristic values from the sensor signal, different simulated defects can be detected reliably: seeded defects in the inner and outer race of rolling element bearings as well as the occurrence of mixed friction in the sliding surface bearing due to interrupted lubricant inflow.


Sign in / Sign up

Export Citation Format

Share Document