Effect of Humidity on Gas Sensing Performance of Carbon Nanotube Gas Sensors Operated at Room Temperature

2020 ◽  
pp. 1-1
Author(s):  
Mostafa Shooshtari ◽  
Alireza Salehi ◽  
Sten Vollebregt
2020 ◽  
Vol 8 (38) ◽  
pp. 13108-13126
Author(s):  
Hanie Hashtroudi ◽  
Ian D. R. Mackinnon ◽  
Mahnaz Shafiei

Gas sensing performance of conductometric devices based on 2D hybrid nanomaterials operating at room temperature.


2018 ◽  
Vol 9 ◽  
pp. 2832-2844 ◽  
Author(s):  
Dongjin Sun ◽  
Yifan Luo ◽  
Marc Debliquy ◽  
Chao Zhang

Owing to the excellent sensitivity to gases, metal-oxide semiconductors (MOS) are widely used as materials for gas sensing. Usually, MOS gas sensors have some common shortages, such as relatively poor selectivity and high operating temperature. Graphene has drawn much attention as a gas sensing material in recent years because it can even work at room temperature, which reduces power consumption. However, the low sensitivity and long recovery time of the graphene-based sensors limit its further development. The combination of metal-oxide semiconductors and graphene may significantly improve the sensing performance, especially the selectivity and response/recovery rate at room temperature. In this review, we have summarized the latest progress of graphene/metal-oxide gas sensors for the detection of NO2, NH3, CO and some volatile organic compounds (VOCs) at room temperature. Meanwhile, the sensing performance and sensing mechanism of the sensors are discussed. The improved experimental schemes are raised and the critical research directions of graphene/metal-oxide sensors in the future are proposed.


Nanomaterials ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2303
Author(s):  
Giovanni Drera ◽  
Sonia Freddi ◽  
Tiziano Freddi ◽  
Andrea De Poli ◽  
Stefania Pagliara ◽  
...  

Photovoltaic (PV) cells based on single-walled carbon nanotube (SWCNT)/silicon (Si) and multiwalled carbon nanotube (MWCNT)/Si junctions were tested under exposure to NH3 in the 0–21 ppm concentration range. The PV cell parameters remarkably changed upon NH3 exposure, suggesting that these junctions, while being operated as PV cells, can react to changes in the environment, thereby acting as NH3 gas sensors. Indeed, by choosing the open-circuit voltage, VOC, parameter as read-out, it was found that these cells behaved as gas sensors, operating at room temperature with a response higher than chemiresistors developed on the same layers. The sensitivity was further increased when the whole current–voltage (I–V) curve was collected and the maximum power values were tracked upon NH3 exposure.


RSC Advances ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 5618-5628
Author(s):  
Wenkai Jiang ◽  
Xinwei Chen ◽  
Tao Wang ◽  
Bolong Li ◽  
Min Zeng ◽  
...  

A high performance gas sensor based on a metal phthalocyanine/graphene quantum dot hybrid material was fabricated for NO2 detection at room-temperature.


Nanoscale ◽  
2015 ◽  
Vol 7 (35) ◽  
pp. 14643-14651 ◽  
Author(s):  
Shuang Xu ◽  
Jun Gao ◽  
Linlin Wang ◽  
Kan Kan ◽  
Yu Xie ◽  
...  

2015 ◽  
Vol 637 ◽  
pp. 55-61 ◽  
Author(s):  
Xiaohui Mu ◽  
Changlong Chen ◽  
Liuyuan Han ◽  
Baiqi Shao ◽  
Yuling Wei ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 440
Author(s):  
Daniel Garcia-Osorio ◽  
Pilar Hidalgo-Falla ◽  
Henrique E. M. Peres ◽  
Josue M. Gonçalves ◽  
Koiti Araki ◽  
...  

Gas sensors are fundamental for continuous online monitoring of volatile organic compounds. Gas sensors based on semiconductor materials have demonstrated to be highly competitive, but are generally made of expensive materials and operate at high temperatures, which are drawbacks of these technologies. Herein is described a novel ethanol sensor for room temperature (25 °C) measurements based on hematite (α‑Fe2O3)/silver nanoparticles. The AgNPs were shown to increase the oxide semiconductor charge carrier density, but especially to enhance the ethanol adsorption rate boosting the selectivity and sensitivity, thus allowing quantification of ethanol vapor in 2–35 mg L−1 range with an excellent linear relationship. In addition, the α-Fe2O3/Ag 3.0 wt% nanocomposite is cheap, and easy to make and process, imparting high perspectives for real applications in breath analyzers and/or sensors in food and beverage industries. This work contributes to the advance of gas sensing at ambient temperature as a competitive alternative for quantification of conventional volatile organic compounds.


Sign in / Sign up

Export Citation Format

Share Document