scholarly journals Enhancing room-temperature NO2 gas sensing performance based on a metal phthalocyanine/graphene quantum dot hybrid material

RSC Advances ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 5618-5628
Author(s):  
Wenkai Jiang ◽  
Xinwei Chen ◽  
Tao Wang ◽  
Bolong Li ◽  
Min Zeng ◽  
...  

A high performance gas sensor based on a metal phthalocyanine/graphene quantum dot hybrid material was fabricated for NO2 detection at room-temperature.

RSC Advances ◽  
2021 ◽  
Vol 11 (24) ◽  
pp. 14805-14813
Author(s):  
Wenkai Jiang ◽  
Menglin Jiang ◽  
Tao Wang ◽  
Xinwei Chen ◽  
Min Zeng ◽  
...  

A high performance gas sensor based on a cobalt phthalocyanine derivative/graphene quantum dot hybrid material was fabricated for DMMP detection at room-temperature.


Nanomaterials ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 909 ◽  
Author(s):  
Zikai Jiang ◽  
Weigen Chen ◽  
Lingfeng Jin ◽  
Fang Cui ◽  
Zihao Song ◽  
...  

The development of functionalized metal oxide/reduced graphene oxide (rGO) hybrid nanocomposites concerning power equipment failure diagnosis is one of the most recent topics. In this work, WO3 nanolamellae/reduced graphene oxide (rGO) nanocomposites with different contents of GO (0.5 wt %, 1 wt %, 2 wt %, 4 wt %) were synthesized via controlled hydrothermal method. X-ray diffraction (XRD), transmission electron microscopy (TEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), thermogravimetric analyses-derivative thermogravimetric analysis-differential scanning calorimetry (TG-DTG-DSC), BET, and photoluminescence (PL) spectroscopy were utilized to investigate morphological characterizations of prepared gas sensing materials and indicated that high quality WO3 nanolamellae were widely distributed among graphene sheets. Experimental ceramic planar gas sensors composing of interdigitated alumina substrates, Au electrodes, and RuO2 heating layer were coated with WO3 nanolamellae/reduced graphene oxide (rGO) films by spin-coating technique and then tested for gas sensing towards multi-concentrations of acetylene (C2H2) gases in a carrier gas with operating temperature ranging from 50 °C to 400 °C. Among four contents of prepared samples, sensing materials with 1 wt % GO nanocomposite exhibited the best C2H2 sensing performance with lower optimal working temperature (150 °C), higher sensor response (15.0 toward 50 ppm), faster response-recovery time (52 s and 27 s), lower detection limitation (1.3 ppm), long-term stability, and excellent repeatability. The gas sensing mechanism for enhanced sensing performance of nanocomposite is possibly attributed to the formation of p-n heterojunction and the active interaction between WO3 nanolamellae and rGO sheets. Besides, the introduction of rGO nanosheets leads to the impurity of synthesized materials, which creates more defects and promotes larger specific area for gas adsorption, outstanding conductivity, and faster carrier transport. The superior gas sensing properties of WO3/rGO based gas sensor may contribute to the development of a high-performance ppm-level gas sensor for the online monitoring of dissolved C2H2 gas in large-scale transformer oil.


2021 ◽  
Author(s):  
Lanjuan Zhou ◽  
Qian Mi ◽  
Yingbo Jin ◽  
Tingting Li ◽  
Dongzhi Zhang

Abstract In this paper, MoO3/MoSe2 n-n heterostructure was constructed for fabricating trimethylamine (TMA) gas sensor by an improved hydrothermal and spin-coating method. The surface morphology and microstructure of the prepared materials were analyzed by XRD, XPS, SEM and TEM characterization methods. The microstructural characterization results demonstrated that the MoO3/MoSe2 heterostructure had been successfully synthesized, in which the MoSe2 had a flower-shaped structure, and MoO3 had a rod-shaped structure. At the same time, the MoSe2 surface exhibited periodic honeycomb structure. The gas-sensitivity experimental results showed that the proposed MoO3/MoSe2 sensor had excellent TMA sensing performance at room temperature, including high response capability, low detection limit (20 ppb), short response/recovery time (12 s/19 s), long-term stability, good repeatability and outstanding selectivity. The heterostructure of MoO3/MoSe2 had made outstanding contributions to the enhanced TMA gas sensing performance at room temperature.


2021 ◽  
Vol 9 ◽  
Author(s):  
Faheem Ullah Khan ◽  
Shahid Mehmood ◽  
Shiliang Liu ◽  
Wei Xu ◽  
Muhammad Naeem Shah ◽  
...  

As formaldehyde is an extremely toxic volatile organic pollutant, a highly sensitive and selective gas sensor for low-concentration formaldehyde monitoring is of great importance. Herein, metal-organic framework (MOF) derived Pd/PdO@ZnO porous nanostructures were synthesized through hydrothermal method followed by calcination processes. Specifically, porous Pd/PdO@ZnO nanomaterials with large surfaces were synthesized using MOFs as sacrificial templates. During the calcination procedure, an optimized temperature of 500°C was used to form a stable structure. More importantly, intensive PdO@ZnO inside the material and composite interface provides lots of p-n heterojunction to efficiently manipulate room temperature sensing performance. As the height of the energy barrier at the junction of PdO@ZnO exponentially influences the sensor resistance, the Pd/PdO@ZnO nanomaterials exhibit high sensitivity (38.57% for 100 ppm) at room temperature for 1-ppm formaldehyde with satisfactory selectivity towards (ammonia, acetone, methanol, and IPA). Besides, due to the catalytic effect of Pd and PdO, the adsorption and desorption of the gas molecules are accelerated, and the response and recovery time is as small as 256 and 264 s, respectively. Therefore, this MOF-driven strategy can prepare metal oxide composites with high surface area, well-defined morphology, and satisfactory room-temperature formaldehyde gas sensing performance for indoor air quality control.


2020 ◽  
Vol 22 (33) ◽  
pp. 18499-18506
Author(s):  
Wenkai Jiang ◽  
Tao Wang ◽  
Xinwei Chen ◽  
Bolong Li ◽  
Min Zeng ◽  
...  

2,9,16,23-tetracarboxylic cobalt phthalocyanine (CoPc–COOH) nanofibres have demonstrated outstanding gas sensing performance at room temperature, which exhibit fast recovery with an ultralow laser exposure.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1360
Author(s):  
Qiaohua Feng ◽  
Huanhuan Zhang ◽  
Yunbo Shi ◽  
Xiaoyu Yu ◽  
Guangdong Lan

A sensor operating at room temperature has low power consumption and is beneficial for the detection of environmental pollutants such as ammonia and benzene vapor. In this study, polyaniline (PANI) is made from aniline under acidic conditions by chemical oxidative polymerization and doped with tin dioxide (SnO2) at a specific percentage. The PANI/SnO2 hybrid material obtained is then ground at room temperature. The results of scanning electron microscopy show that the prepared powder comprises nanoscale particles and has good dispersibility, which is conducive to gas adsorption. The thermal decomposition temperature of the powder and its stability are measured using a differential thermo gravimetric analyzer. At 20 °C, the ammonia gas and benzene vapor gas sensing of the PANI/SnO2 hybrid material was tested at concentrations of between 1 and 7 ppm of ammonia and between 0.4 and 90 ppm of benzene vapor. The tests show that the response sensitivities to ammonia and benzene vapor are essentially linear. The sensing mechanisms of the PANI/SnO2 hybrid material to ammonia and benzene vapors were analyzed. The results demonstrate that doped SnO2 significantly affects the sensitivity, response time, and recovery time of the PANI material.


Sensors ◽  
2019 ◽  
Vol 19 (18) ◽  
pp. 3815
Author(s):  
Renyun Zhang ◽  
Magnus Hummelgård ◽  
Joel Ljunggren ◽  
Håkan Olin

Metal-semiconductor junctions and interfaces have been studied for many years due to their importance in applications such as semiconductor electronics and solar cells. However, semiconductor-metal networks are less studied because there is a lack of effective methods to fabricate such structures. Here, we report a novel Au–ZnO-based metal-semiconductor (M-S)n network in which ZnO nanowires were grown horizontally on gold particles and extended to reach the neighboring particles, forming an (M-S)n network. The (M-S)n network was further used as a gas sensor for sensing ethanol and acetone gases. The results show that the (M-S)n network is sensitive to ethanol (28.1 ppm) and acetone (22.3 ppm) gases and has the capacity to recognize the two gases based on differences in the saturation time. This study provides a method for producing a new type of metal-semiconductor network structure and demonstrates its application in gas sensing.


Nanoscale ◽  
2015 ◽  
Vol 7 (35) ◽  
pp. 14643-14651 ◽  
Author(s):  
Shuang Xu ◽  
Jun Gao ◽  
Linlin Wang ◽  
Kan Kan ◽  
Yu Xie ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document