Impact of Tile Drainage on Evapotranspiration in South Dakota, USA, Based on High Spatiotemporal Resolution Evapotranspiration Time Series From a Multisatellite Data Fusion System

Author(s):  
Yun Yang ◽  
Martha Anderson ◽  
Feng Gao ◽  
Christopher Hain ◽  
William Kustas ◽  
...  
2020 ◽  
Vol 12 (14) ◽  
pp. 2312
Author(s):  
Junming Yang ◽  
Yunjun Yao ◽  
Yongxia Wei ◽  
Yuhu Zhang ◽  
Kun Jia ◽  
...  

The methods for accurately fusing medium- and high-spatial-resolution satellite reflectance are vital for monitoring vegetation biomass, agricultural irrigation, ecological processes and climate change. However, the currently existing fusion methods cannot accurately capture the temporal variation in reflectance for heterogeneous landscapes. In this study, we proposed a new method, the spatial and temporal reflectance fusion method based on the unmixing theory and a fuzzy C-clustering model (FCMSTRFM), to generate Landsat-like time-series surface reflectance. Unlike other data fusion models, the FCMSTRFM improved the similarity of pixels grouped together by combining land cover maps and time-series data cluster algorithms to define endmembers. The proposed method was tested over a 2000 km2 study area in Heilongjiang Provence, China, in 2017 and 2018 using ten images. The results show that the accuracy of the FCMSTRFM is better than that of the popular enhanced spatial and temporal adaptive reflectance fusion model (ESTARFM) (correlation coefficient (R): 0.8413 vs. 0.7589; root mean square error (RMSE): 0.0267 vs. 0.0401) and the spatial-temporal data fusion approach (STDFA) (R: 0.8413 vs. 0.7666; RMSE: 0.0267 vs. 0.0307). Importantly, the FCMSTRFM was able to maintain the details of temporal variations in complicated landscapes. The proposed method provides an alternative method to monitor the dynamics of land surface variables over complicated heterogeneous regions.


2020 ◽  
Vol 12 (22) ◽  
pp. 3774
Author(s):  
Xuegang Xing ◽  
Changzhen Yan ◽  
Yanyan Jia ◽  
Haowei Jia ◽  
Junfeng Lu ◽  
...  

The normalized difference vegetation index (NDVI) is a powerful tool for understanding past vegetation, monitoring the current state, and predicting its future. Due to technological and budget limitations, the existing global NDVI time-series data cannot simultaneously meet the needs of high spatial and temporal resolution. This study proposes a high spatiotemporal resolution NDVI fusion model based on histogram clustering (NDVI_FMHC), which uses a new spatiotemporal fusion framework to predict phenological and shape changes. Meanwhile, this model also uses four strategies to reduce error, including the construction of an overdetermined linear mixed model, multiscale prediction, residual distribution, and Gaussian filtering. Five groups of real MODIS_NDVI and Landsat_NDVI datasets were used to verify the predictive performance of the NDVI_FMHC. The results indicate that NDVI_FMHC has higher accuracy and robustness in forest areas (r = 0.9488 and ADD = 0.0229) and cultivated land areas (r = 0.9493 and ADD = 0.0605), while the prediction effect is relatively weak in areas subject to shape changes, such as flooded areas (r = 0.8450 and ADD = 0.0968), urban areas (r = 0.8855 and ADD = 0.0756), and fire areas (r = 0.8417 and ADD = 0.0749). Compared with ESTARFM, NDVI_LMGM, and FSDAF, NDVI_FMHC has the highest prediction accuracy, the best spatial detail retention, and the strongest ability to capture shape changes. Therefore, the NDVI_FMHC can obtain NDVI time-series data with high spatiotemporal resolution, which can be used to realize long-term land surface dynamic process research in a complex environment.


2021 ◽  
Author(s):  
Sebastian Buchelt ◽  
Kirstine Skov ◽  
Tobias Ullmann

Abstract. Snow cover (SC) and timing of snowmelt are key regulators of a wide range of Arctic ecosystem functions. Both are strongly influenced by the amplified arctic warming and essential variables to understand environmental changes and their dynamics. This study evaluates the potential of Sentinel-1 (S-1) synthetic aperture radar (SAR) time series for monitoring SC and snowmelt with high spatiotemporal resolution to capture their understudied small-scale heterogeneity. We use 97 dual-polarized S-1 SAR images acquired over north-eastern Greenland in the interferometric wide swath mode from the years 2017 and 2018. Comparison of S-1 intensity against SC fraction maps derived from orthorectified terrestrial time lapse imagery indicates an increase of the SAR intensity before a decrease of SC fraction is observed. Hence, increase of backscatter is related to changing snowpack properties during the runoff phase as well as decreasing SC fraction. We here present a novel approach using backscatter intensity thresholds to identify start and end of snowmelt (SOS and EOS), perennial snow and wet/dry SC based on the temporal evolution of the SAR signal. Comparison of SC with orthorectified time lapse imagery indicate that HV polarization outperforms HH when using a global threshold. With a global configuration (Threshold: 4 dB; polarization: HV), the overall accuracy of SC maps was in all cases above 75 % and in more than half cases above 90 % enabling a large-scale SC monitoring at high spatiotemporal resolution (20 m, 6 days) with high accuracy.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 826
Author(s):  
Krystian Chachuła ◽  
Robert Nowak ◽  
Fernando Solano

In December 2016, the wastewater treatment plant of Baarle-Nassau, Netherlands, failed. The failure was caused by the illegal disposal of high volumes of acidic waste into the sewer network. Repairs cost between 80,000 and 100,000 EUR. A continuous monitoring system of a utility network such as this one would help to determine the causes of such pollution and could mitigate or reduce the impact of these kinds of events in the future. We have designed and tested a data fusion system that transforms the time-series of sensor measurements into an array of source-localized discharge events. The data fusion system performs this transformation as follows. First, the time-series of sensor measurements are resampled and converted to sensor observations in a unified discrete time domain. Second, sensor observations are mapped to pollutant detections that indicate the amount of specific pollutants according to a priori knowledge. Third, pollutant detections are used for inferring the propagation of the discharged pollutant downstream of the sewage network to account for missing sensor observations. Fourth, pollutant detections and inferred sensor observations are clustered to form tracks. Finally, tracks are processed and propagated upstream to form the final list of probable events. A set of experiments was performed using a modified variant of the EPANET Example Network 2. Results of our experiments show that the proposed system can narrow down the source of pollution to seven or fewer nodes, depending on the number of sensors, while processing approximately 100 sensor observations per second. Having considered the results, such a system could provide meaningful information about pollution events in utility networks.


Sign in / Sign up

Export Citation Format

Share Document