scholarly journals Spatial gap-filling of SMAP soil moisture pixels over Tibetan Plateau via machine learning versus geostatistics

Author(s):  
Cheng Tong ◽  
Hongquan Wang ◽  
Ramata Magagi ◽  
Kalifa Goita ◽  
Ke Wang
2021 ◽  
Vol 13 (14) ◽  
pp. 2848
Author(s):  
Hao Sun ◽  
Qian Xu

Obtaining large-scale, long-term, and spatial continuous soil moisture (SM) data is crucial for climate change, hydrology, and water resource management, etc. ESA CCI SM is such a large-scale and long-term SM (longer than 40 years until now). However, there exist data gaps, especially for the area of China, due to the limitations in remote sensing of SM such as complex topography, human-induced radio frequency interference (RFI), and vegetation disturbances, etc. The data gaps make the CCI SM data cannot achieve spatial continuity, which entails the study of gap-filling methods. In order to develop suitable methods to fill the gaps of CCI SM in the whole area of China, we compared typical Machine Learning (ML) methods, including Random Forest method (RF), Feedforward Neural Network method (FNN), and Generalized Linear Model (GLM) with a geostatistical method, i.e., Ordinary Kriging (OK) in this study. More than 30 years of passive–active combined CCI SM from 1982 to 2018 and other biophysical variables such as Normalized Difference Vegetation Index (NDVI), precipitation, air temperature, Digital Elevation Model (DEM), soil type, and in situ SM from International Soil Moisture Network (ISMN) were utilized in this study. Results indicated that: 1) the data gap of CCI SM is frequent in China, which is found not only in cold seasons and areas but also in warm seasons and areas. The ratio of gap pixel numbers to the whole pixel numbers can be greater than 80%, and its average is around 40%. 2) ML methods can fill the gaps of CCI SM all up. Among the ML methods, RF had the best performance in fitting the relationship between CCI SM and biophysical variables. 3) Over simulated gap areas, RF had a comparable performance with OK, and they outperformed the FNN and GLM methods greatly. 4) Over in situ SM networks, RF achieved better performance than the OK method. 5) We also explored various strategies for gap-filling CCI SM. Results demonstrated that the strategy of constructing a monthly model with one RF for simulating monthly average SM and another RF for simulating monthly SM disturbance achieved the best performance. Such strategy combining with the ML method such as the RF is suggested in this study for filling the gaps of CCI SM in China.


2020 ◽  
Author(s):  
Seulchan Lee ◽  
Hyunho Jeon ◽  
Jongmin Park ◽  
Minha Choi

<p>As the importance of Soil Moisture (SM) has been recognized in various fields, including agricultural practices, natural hazards, and climate predictions, ground-based SM sensors such as Frequency Domain Reflectometry (FDR), Time Domain Reflectometry (TDR) are being widely used. However, gaps in in-situ SM data are still unavoidable due not only to sensor failure or low voltage supply, but to environmental conditions. Since it is essential to acquire accurate and continuous SM data for its application purpose, the gaps in the data should be handled properly. In this study, we propose a physically based gap-filling method in a mountainous region, in which in-situ SM measurements and flux tower are located. This method is developed only with in-situ SM and precipitation data, by considering variation characteristics of SM: increases rapidly with precipitation and decreases asymptotically afterward. SM data from the past is used to build Look-Up-Tables (LUTs) that contains the amount and speed of increment and decrement of SM, with and without precipitation, respectively. Based on the developed LUTs, the gaps are filled successively from where the gaps started. At the same time, we also introduce a machine learning-based gap-filling framework for the comparison. Ancillary data from the flux tower (e.g. net radiation, relative humidity) was used as input for training, with the same period as in the physically based method. The trained models are then used to fill the gaps. We found that both proposed methods are able to fill the gaps of in-situ SM reasonably, with capabilities to capture the characteristics of SM variation. Results from the comparison indicate that the physically based gap-filling method is very accurate and efficient when there’s limited information, and also suitable to be used for prediction purposes.</p>


2020 ◽  
Author(s):  
Sibo Zhang ◽  
Wei Yao

<p>In the past, soil moisture can be retrieved from microwave imager over most of land conditions. However, the algorithm performances over Tibetan Plateau and the Northwest China vary greatly from one to another due to frozen soils and surface volumetric scattering. The majority of western Chinese region is often filled with invalid retrievals. In this study, Soil Moisture Operational Products System (SMOPS) products from NOAA are used as the learning objectives to train a  machine learning (random forest) model for FY-3C microwave radiation imager (MWRI) data with multivariable inputs: brightness temperatures from all 10 MWRI channels from 10 to 89 GHz, brightness temperature polarization ratios at 10.65, 18.7 and 23.8 GHz, height in DEM (digital elevation model) and statistical soil porosity map data. Since the vegetation penetration of MWRI observations is limited, we exclude forest, urban and snow/ice surfaces in this work. It is shown that our new method performs very well and derives the surface soil moisture over Tibetan Plateau without major missing values. Comparing to other soil moisture data, the volumetric soil moisture (VSM) from this study correlates with SMOPS products much better than the MWRI operational L2 VSM products. R<sup>2</sup> score increases from 0.3 to 0.6 and ubRMSE score improves significantly from 0.11 m<sup>3</sup> m<sup>-3</sup> to 0.04 m<sup>3</sup> m<sup>-3</sup> during the time period from 1 August 2017 to 31 May 2019. The spatial distribution of our MWRI VSM estimates is also much improved in western China. Moreover, our MWRI VSM estimates are in good agreement with the top 7 cm soil moisture of ECMWF ERA5 reanalysis data: R<sup>2</sup> = 0.62, ubRMSD = 0.114 m<sup>3</sup> m<sup>-3</sup> and mean bias = -0.014 m<sup>3</sup> m<sup>-3</sup> for a global scale. We note that there is a risk of data gap of AMSR2 from the present to 2025. Obviously, for satellite low frequency microwave observations, MWRI observations from FY-3 series satellites can be a benefit supplement to keep the data integrity and increase the data density, since FY-3B\-3C\-3D satellites launched in November 2010\September 2013\November 2017 are still working today, and FY-3D is designed to work until November 2022.</p>


2019 ◽  
Vol 55 (8) ◽  
pp. 6986-7009 ◽  
Author(s):  
Hanzi Mao ◽  
Dhruva Kathuria ◽  
Nick Duffield ◽  
Binayak P. Mohanty

2019 ◽  
Vol 11 (3) ◽  
pp. 284 ◽  
Author(s):  
Linglin Zeng ◽  
Shun Hu ◽  
Daxiang Xiang ◽  
Xiang Zhang ◽  
Deren Li ◽  
...  

Soil moisture mapping at a regional scale is commonplace since these data are required in many applications, such as hydrological and agricultural analyses. The use of remotely sensed data for the estimation of deep soil moisture at a regional scale has received far less emphasis. The objective of this study was to map the 500-m, 8-day average and daily soil moisture at different soil depths in Oklahoma from remotely sensed and ground-measured data using the random forest (RF) method, which is one of the machine-learning approaches. In order to investigate the estimation accuracy of the RF method at both a spatial and a temporal scale, two independent soil moisture estimation experiments were conducted using data from 2010 to 2014: a year-to-year experiment (with a root mean square error (RMSE) ranging from 0.038 to 0.050 m3/m3) and a station-to-station experiment (with an RMSE ranging from 0.044 to 0.057 m3/m3). Then, the data requirements, importance factors, and spatial and temporal variations in estimation accuracy were discussed based on the results using the training data selected by iterated random sampling. The highly accurate estimations of both the surface and the deep soil moisture for the study area reveal the potential of RF methods when mapping soil moisture at a regional scale, especially when considering the high heterogeneity of land-cover types and topography in the study area.


Agronomy ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 35
Author(s):  
Xiaodong Huang ◽  
Beth Ziniti ◽  
Michael H. Cosh ◽  
Michele Reba ◽  
Jinfei Wang ◽  
...  

Soil moisture is a key indicator to assess cropland drought and irrigation status as well as forecast production. Compared with the optical data which are obscured by the crop canopy cover, the Synthetic Aperture Radar (SAR) is an efficient tool to detect the surface soil moisture under the vegetation cover due to its strong penetration capability. This paper studies the soil moisture retrieval using the L-band polarimetric Phased Array-type L-band SAR 2 (PALSAR-2) data acquired over the study region in Arkansas in the United States. Both two-component model-based decomposition (SAR data alone) and machine learning (SAR + optical indices) methods are tested and compared in this paper. Validation using independent ground measurement shows that the both methods achieved a Root Mean Square Error (RMSE) of less than 10 (vol.%), while the machine learning methods outperform the model-based decomposition, achieving an RMSE of 7.70 (vol.%) and R2 of 0.60.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Sungmin O. ◽  
Rene Orth

AbstractWhile soil moisture information is essential for a wide range of hydrologic and climate applications, spatially-continuous soil moisture data is only available from satellite observations or model simulations. Here we present a global, long-term dataset of soil moisture derived through machine learning trained with in-situ measurements, SoMo.ml. We train a Long Short-Term Memory (LSTM) model to extrapolate daily soil moisture dynamics in space and in time, based on in-situ data collected from more than 1,000 stations across the globe. SoMo.ml provides multi-layer soil moisture data (0–10 cm, 10–30 cm, and 30–50 cm) at 0.25° spatial and daily temporal resolution over the period 2000–2019. The performance of the resulting dataset is evaluated through cross validation and inter-comparison with existing soil moisture datasets. SoMo.ml performs especially well in terms of temporal dynamics, making it particularly useful for applications requiring time-varying soil moisture, such as anomaly detection and memory analyses. SoMo.ml complements the existing suite of modelled and satellite-based datasets given its distinct derivation, to support large-scale hydrological, meteorological, and ecological analyses.


2021 ◽  
Vol 13 (5) ◽  
pp. 907
Author(s):  
Theodora Lendzioch ◽  
Jakub Langhammer ◽  
Lukáš Vlček ◽  
Robert Minařík

One of the best preconditions for the sufficient monitoring of peat bog ecosystems is the collection, processing, and analysis of unique spatial data to understand peat bog dynamics. Over two seasons, we sampled groundwater level (GWL) and soil moisture (SM) ground truth data at two diverse locations at the Rokytka Peat bog within the Sumava Mountains, Czechia. These data served as reference data and were modeled with a suite of potential variables derived from digital surface models (DSMs) and RGB, multispectral, and thermal orthoimages reflecting topomorphometry, vegetation, and surface temperature information generated from drone mapping. We used 34 predictors to feed the random forest (RF) algorithm. The predictor selection, hyperparameter tuning, and performance assessment were performed with the target-oriented leave-location-out (LLO) spatial cross-validation (CV) strategy combined with forward feature selection (FFS) to avoid overfitting and to predict on unknown locations. The spatial CV performance statistics showed low (R2 = 0.12) to high (R2 = 0.78) model predictions. The predictor importance was used for model interpretation, where temperature had strong impact on GWL and SM, and we found significant contributions of other predictors, such as Normalized Difference Vegetation Index (NDVI), Normalized Difference Index (NDI), Enhanced Red-Green-Blue Vegetation Index (ERGBVE), Shape Index (SHP), Green Leaf Index (GLI), Brightness Index (BI), Coloration Index (CI), Redness Index (RI), Primary Colours Hue Index (HI), Overall Hue Index (HUE), SAGA Wetness Index (TWI), Plan Curvature (PlnCurv), Topographic Position Index (TPI), and Vector Ruggedness Measure (VRM). Additionally, we estimated the area of applicability (AOA) by presenting maps where the prediction model yielded high-quality results and where predictions were highly uncertain because machine learning (ML) models make predictions far beyond sampling locations without sampling data with no knowledge about these environments. The AOA method is well suited and unique for planning and decision-making about the best sampling strategy, most notably with limited data.


Sign in / Sign up

Export Citation Format

Share Document