A New Strategy for Induction Motor Fault Detection Based on Wavelet Transform and Probabilistic Neural Network

Author(s):  
Salman Hajiaghasi ◽  
Zahra Rafiee ◽  
Ahmad Salemnia ◽  
Mohammadreza Aghamohammadi ◽  
Tohid Soleymaniaghdam
2016 ◽  
Vol 79 (1) ◽  
Author(s):  
Suhail Khokhar ◽  
A. A. Mohd Zin ◽  
M. A. Bhayo ◽  
A. S. Mokhtar

The monitoring of power quality (PQ) disturbances in a systematic and automated way is an important issue to prevent detrimental effects on power system. The development of new methods for the automatic recognition of single and hybrid PQ disturbances is at present a major concern. This paper presents a combined approach of wavelet transform based support vector machine (WT-SVM) for the automatic classification of single and hybrid PQ disturbances. The proposed approach is applied by using synthetic models of various single and hybrid PQ signals. The suitable features of the PQ waveforms were first extracted by using discrete wavelet transform. Then SVM classifies the type of PQ disturbances based on these features. The classification performance of the proposed algorithm is also compared with wavelet based radial basis function neural network, probabilistic neural network and feed-forward neural network. The experimental results show that the recognition rate of the proposed WT-SVM based classification system is more accurate and much better than the other classifiers. 


Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 745 ◽  
Author(s):  
Malathy Emperuman ◽  
Srimathi Chandrasekaran

Sensor devices in wireless sensor networks are vulnerable to faults during their operation in unmonitored and hazardous environments. Though various methods have been proposed by researchers to detect sensor faults, only very few research studies have reported on capturing the dynamics of the inherent states in sensor data during fault occurrence. The continuous density hidden Markov model (CDHMM) is proposed in this research to determine the dynamics of the state transitions due to fault occurrence, while neural networks are utilized to classify the faults based on the state transition probability density generated by the CDHMM. Therefore, this paper focuses on the fault detection and classification using the hybridization of CDHMM and various neural networks (NNs), namely the learning vector quantization, probabilistic neural network, adaptive probabilistic neural network, and radial basis function. The hybrid models of each NN are used for the classification of sensor faults, namely bias, drift, random, and spike. The proposed methods are evaluated using four performance metrics which includes detection accuracy, false positive rate, F1-score, and the Matthews correlation coefficient. The simulation results show that the learning vector quantization NN classifier outperforms the detection accuracy rate when compared to the other classifiers. In addition, an ensemble NN framework based on the hybrid CDHMM classifier is built with majority voting scheme for decision making and classification. The results of the hybrid CDHMM ensemble classifiers clearly indicates the efficacy of the proposed scheme in capturing the dynamics of change of statesm which is the vital aspect in determining rapidly-evolving instant faults that occur in wireless sensor networks.


Processes ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1322 ◽  
Author(s):  
Chun-Yao Lee ◽  
Yi-Hsin Cheng

This paper proposes a motor fault detection method based on wavelet transform (WT) and improved PSO-BP neural network which is combined with improved particle swarm optimization (PSO) and a back propagation (BP) neural network with linearly increasing inertia weight. First, this research used WT to analyze the current signals of the healthy motor, bearing damage motor, stator winding inter-turn short circuit motor, and broken rotor bar motor. Second, features after completing the signal analysis were extracted, and three types of classifiers were used to classify. The results show that the improved PSO-BP neural network can effectively detect the cause of failure. In addition, in order to simulate the actual operating environment of the motor, this study added white noise with signal noise ratios of 30 dB, 25 dB, and 20 dB to verify that this model has a better anti-noise ability.


Sign in / Sign up

Export Citation Format

Share Document