Problems of drinking water treatment and analysiscaused by presence of humic substances in underwater

Author(s):  
N. Chernyshova ◽  
L. Svintsova
Catalysts ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 521
Author(s):  
Fernando J. Beltrán ◽  
Ana Rey ◽  
Olga Gimeno

Formation of disinfection byproducts (DBPs) in drinking water treatment (DWT) as a result of pathogen removal has always been an issue of special attention in the preparation of safe water. DBPs are formed by the action of oxidant-disinfectant chemicals, mainly chlorine derivatives (chlorine, hypochlorous acid, chloramines, etc.), that react with natural organic matter (NOM), mainly humic substances. DBPs are usually refractory to oxidation, mainly due to the presence of halogen compounds so that advanced oxidation processes (AOPs) are a recommended option to deal with their removal. In this work, the application of catalytic ozonation processes (with and without the simultaneous presence of radiation), moderately recent AOPs, for the removal of humic substances (NOM), also called DBPs precursors, and DBPs themselves is reviewed. First, a short history about the use of disinfectants in DWT, DBPs formation discovery and alternative oxidants used is presented. Then, sections are dedicated to conventional AOPs applied to remove DBPs and their precursors to finalize with the description of principal research achievements found in the literature about application of catalytic ozonation processes. In this sense, aspects such as operating conditions, reactors used, radiation sources applied in their case, kinetics and mechanisms are reviewed.


2019 ◽  
Vol 19 (8) ◽  
pp. 2330-2337
Author(s):  
Susumu Hasegawa ◽  
Yasuhiro Tanaka ◽  
Naokazu Wake ◽  
Ryosuke Takagi ◽  
Hideto Matsuyama

Abstract Recently, membrane filtration systems have become increasingly common in drinking water treatment plants. In this industry, preventing membrane fouling is of utmost importance. Many studies on the relationship between raw water components and membrane fouling have been performed in laboratory conditions. However, very few studies have analyzed the components of foulants on the fouled membrane as operated in actual drinking water treatment plants. By analyzing these components in plant-conditions, membrane fouling will be more effectively prevented. In this study, we analyzed the components of foulants extracted with 0.1 N NaOH from a fouled membrane operated in a drinking water treatment plant in Japan. Our analysis revealed that the main foulants were humic substances. In order to dissolve the accumulated humic substances, additional chemical cleaning was attempted with 500 ppm sodium hypochlorite. As a result, it was found that humic substances were dissolved and filtration resistance significantly decreased. Additionally, the removal of inorganic foulants was also greater after chemical cleaning with 500 ppm sodium hypochlorite, as inorganic foulants trapped within humic substances were released to the membrane surface as hydroxides by the additional sodium hypochlorite cleaning and were dissolved by the periodic citric acid cleaning.


2011 ◽  
Vol 11 (6) ◽  
pp. 668-674 ◽  
Author(s):  
B. Q. Zhao ◽  
C. P. Huang ◽  
S. Y. Chen ◽  
D. S. Wang ◽  
T. Li ◽  
...  

Natural organic matter (NOM) plays a significant role in the fouling of ultrafiltration membranes in drinking water treatment processes. For a better understanding of the interaction between fractional components of NOM and polysulfone (PS) ultrafiltration membranes used for drinking water treatment, fouling and especially the physically irreversible fouling of natural organic matter were investigated. Resin fractionation, fluorescence excitation–emission matrix (EEM) spectroscopy, fourier transform infrared spectroscopy (FTIR), contact angle and a scanning electron microscope (SEM) were employed to identify the potential foulants. The results showed that humic acid and fulvic acid of small size were likely to permeate the membrane, while the hydrophobic fraction of humic and fulvic acid and aromatic proteins tended to be rejected and retained. Organic compounds such as proteins, humic substances, and polysaccharide-like materials, were all detected in the fouling layer. The physically irreversible fouling of the PS membrane seemed to be mainly attributed to the hydrophobic fraction of humic substances.


2015 ◽  
Vol 14 (6) ◽  
pp. 1347-1354 ◽  
Author(s):  
Florica Manea ◽  
Anamaria Baciu ◽  
Aniela Pop ◽  
Katalin Bodor ◽  
Ilie Vlaicu

1986 ◽  
Vol 21 (3) ◽  
pp. 447-459 ◽  
Author(s):  
K.J. Roberts ◽  
R.B. Hunsinger ◽  
A.H. Vajdic

Abstract The Drinking Water Surveillance Program (DWSP), developed by the Ontario Ministry of the Environment, is an assessment project based on standardized analytical and sampling protocol. This program was recently instituted in response to a series of contaminant occurrences in the St. Clair-Detroit River area of Southwestern Ontario. This paper outlines the details and goals of the program and provides information concerning micro-contaminants in drinking water at seven drinking water treatment plants in Southwestern Ontario.


1983 ◽  
Vol 15 (S2) ◽  
pp. 95-101 ◽  
Author(s):  
E T Gjessing

For several reasons the surface waters in cold climate areas are coloured due to humic substances. There are two major objections against humus in drinking water, the first is concerned with aesthetical and practical problems and the second is due to indirect negative health effects. There are essentially three different methods in use today for the removal or reduction of humus colour in water: (1) Addition of chemicals with the intention of reducing the “solubility”, (2) Addition of chemicals in order to bleach or mineralize the humus, and (3) Filtration with the intention of removal of coloured particles and some of the “soluble” colour. The treatment processes are discussed.


Sign in / Sign up

Export Citation Format

Share Document