Effective Diversity Gain Evaluation for Large-Scale MIMO Antenna System

2016 ◽  
Vol 15 ◽  
pp. 1394-1397
Author(s):  
Wen-Jiao Liao ◽  
Bang-Yun Dai ◽  
Bo-Ren Hsiao
2021 ◽  
Author(s):  
Relangi Anil Kumar ◽  
Satya Prasad K

Abstract The massive growth of mobile users and various applications in coming days requires an enhanced Radio Access Technology (eRAT) to improve the diversity gain and spectral efficiency. Current research on Generalized Frequency Division Multiplexing (GFDM) modulation technique combined with Multi-Input Multi-Output (MIMO) antenna system gives good resource allocation, out band emission and better signal strengths over the existing Orthogonal Multiple Access (OMA) techniques. The proposed scheme explains the improvement of diversity gain, spectral efficiency and energy efficiency of MIMO-GFMD system by combining the benefits of Subcarrier Index Modulation (SIM) and Constellation Precoding (CP) Technique. It is referred as SIM-CP-MIMO-GFDM system. In order to achieve the requirements, in proposed scheme few subcarriers are activated by index modulation bits in quadrature/in-phase dimensions and then data symbols are constellation Precoded. At the receiver, data blocks are detected by using QR Decomposition based Maximum Likelihood (ML) detection. Finally, this paper explains both theoretical and simulation result analysis that the proposed SIM-CP-MIMO-GFDM system outperforms compared to existing systems.


Massive Multi-Input and Multi-Output (MIMO) antenna system provides unlimited capacity by the spatial multiplexing and array gain. Since the data rate has been limited by the coherence interference due to pilot contamination (PC). In this paper, we propose transmit combine and precoding schemes to achieve asymptotic capacity in multi-cell scenario, when the number of base station antennas tends to infinity. The impact of spatial channel correlation on channel capacity is explored by considering the co-variance matrices of the user –terminals (UT)s .To do this, we presented linear processing schemes such as MMSE,MRC, and ZF.Where MMSE achieves high capacity in the presence of large-scale fading and PC. Since the diagonals of the channel covariance matrices were designed with non- zero Eigen values and linearly independent. The results outperform and obtain asymptotic limit, when the co-variance of UTs are linearly independent. The results were simulated by using MATLAB 2018b.


Author(s):  
Sumon Modak ◽  
Taimoor Khan

Abstract This study presents a novel configuration of a cuboidal quad-port ultra-wideband multiple-input and multiple-output antenna with WLAN rejection characteristics. The designed antenna consists of four F-shaped elements backed by a partial ground plane. A 50 Ω microstrip line is used to feed the proposed structure. The geometry of the suggested antenna exhibits an overall size of 23 × 23 × 19 mm3, and the antenna produces an operational bandwidth of 7.6 GHz (3.1–10.7 GHz). The notched band characteristic at 5.4 GHz is accomplished by loading a pair of spiral electromagnetic bandgap structures over the ground plane. Besides this, other diversity features such as envelope correlation coefficient, and diversity gain are also evaluated. Furthermore, the proposed antenna system provides an isolation of −15 dB without using any decoupling structure. Therefore, to validate the reported design, a prototype is fabricated and characterized. The overall simulated performance is observed in very close agreement with it's measured counterpart.


2021 ◽  
Vol 11 (5) ◽  
pp. 2382
Author(s):  
Rongguo Song ◽  
Xiaoxiao Chen ◽  
Shaoqiu Jiang ◽  
Zelong Hu ◽  
Tianye Liu ◽  
...  

With the development of 5G, Internet of Things, and smart home technologies, miniaturized and compact multi-antenna systems and multiple-input multiple-output (MIMO) antenna arrays have attracted increasing attention. Reducing the coupling between antenna elements is essential to improving the performance of such MIMO antenna system. In this work, we proposed a graphene-assembled, as an alternative material rather than metal, film-based MIMO antenna array with high isolation for 5G application. The isolation of the antenna element is improved by a graphene assembly film (GAF) frequency selective surface and isolation strip. It is shown that the GAF antenna element operated at 3.5 GHz has the realized gain of 2.87 dBi. The addition of the decoupling structure improves the isolation of the MIMO antenna array to more than 10 dB and corrects the antenna radiation pattern and operating frequency. The isolation between antenna elements with an interval of 0.4λ is above 25 dB. All experimental results show that the GAF antenna and decoupling structure are efficient devices for 5G mobile communication.


Author(s):  
Hassan Tariq Chattha ◽  
Muhammad Kamran Ishfaq ◽  
Bilal A. Khawaja ◽  
Abubakar Sharif ◽  
Nathirulla Sheriff
Keyword(s):  

IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Mujeeb Abdullah ◽  
Ahsan Altaf ◽  
Muhammad Rizwan Anjum ◽  
Zulfiqar Ali Arain ◽  
Abdul Aleem Jamali ◽  
...  

2019 ◽  
Vol 11 (4) ◽  
pp. 413-419 ◽  
Author(s):  
Ziyu Xu ◽  
Qisheng Zhang ◽  
Linyan Guo

AbstractA printed multiband Multi-Input Multiple-Output (MIMO) antenna is proposed in this paper. This MIMO antenna system comprises two symmetric printed monopole antennas. Each antenna element consists of multiple bend lines, producing four resonant modes and covering the GSM900, PCS, LTE2300, and 5G bands. Simulated and measured results prove that the proposed MIMO antenna can be applied to traditional 2G, 3G, 4G, and present 5G mobile communication. By etching four inverted L-shaped grooves on its ground plate, mutual coupling between the adjacent antenna elements has been suppressed. This makes the |S21| at all four resonant modes is lower than −40 dB. In addition, its low coupling mechanism has been analyzed by surface current distribution. The designed multiband MIMO antenna provides an idea of reference to realize low mutual coupling between antenna elements, which is also realizable in infrared or optical regimes with appropriate designs.


2012 ◽  
Vol 2012 ◽  
pp. 1-10
Author(s):  
Lajos Nagy

This paper deals with the optimization of MIMO antenna elements' position in modified MIMO cube for getting maximal channel capacity in indoor environment. The dependence of the channel capacity on the antenna orientation was analyzed by simulations. We have also examined the effect of the frequency dependence of the antenna system (in case of conjugate matching and nonconjugate matching) for the channel capacity. Based on the simulation results in the created and measured antenna system, the antennas were at a right angle to each other. At the two chosen different structures, we measured the antenna parameters and the channel capacity. In this paper, we present the results of the measurements which clearly confirm our simulations. We will point out the differences between the two antenna structures.


Sign in / Sign up

Export Citation Format

Share Document