Low-Profile FSS-based Polarization Insensitive Rasorber with Switchable Transmission Band

Author(s):  
Min Tang ◽  
Dongfang Zhou ◽  
Qikun Liu ◽  
Zhenning Yao ◽  
Qing Liu
Author(s):  
Muhammad Idrees ◽  
Sai-Wai Wong ◽  
Yejun He ◽  
Saifullah Khalid ◽  
Muhammad Ali Khalid ◽  
...  

2021 ◽  
Author(s):  
Raghvenda Kumar Singh ◽  
Ashish Gupta ◽  
Akash Yadav ◽  
Nishchay Gupta ◽  
Utkarsh Tyagi

Abstract A penta-band absorber is proposed and developed exhibiting ultra thin and polarization insensitive behavior. It has been designed to be operated in S, C and Ku bands with absorptions peaks at more than 95%. Proposed absorber is processed on a FR4 Glass Epoxy laminate with equivalent electrical thickness of 0.0108 λ0 where λ0 is the wavelength corresponding to the lowest frequency of operation. This confirms the ultra-thin nature of the structure. The absorption pattern of the proposed structure has been characterized under normal and oblique incidence followed by their experimental verification. Presented results demonstrate highly polarization-independent behavior of the proposed absorber due to its symmetric geometry. Also, the electromagnetic field distributions have been studied to acquire better insight of the absorption mechanism corresponding to distinct elements presented in the structure. Then the suggested structure is characterized in terms of its behavior as metamaterial, which ensures the miniaturization. The proposed absorber is suitable to be used in applications like radar cross section reduction, stealth technology, radio frequency identification and electromagnetic compatibility.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4883
Author(s):  
Shicheng Fan ◽  
Yaoliang Song

In this paper, an ultra-wideband flexible absorber is proposed. Based on a summary of the absorption mechanism, using lossless air to replace the heavy lossy dielectric layer will not substantially impact the absorption. The dielectric layer is only a thin layer of polyimide. The proposed absorber is a sandwich structure. The surface is a layer of copper metal ring and wire, and it is loaded with chip resistors to expand the absorber bandwidth. Simulated results show that the bandwidth of the proposed absorber, with an absorptivity of more than 90%, is 2.55–10.07 GHz, with a relative bandwidth over 119.2%. When the electromagnetic wave has a wide incident angle, the absorber still maintains a high absorption. This absorber has been fabricated by FPC (flexible printed circuit) technology. The proposed absorber was attached to the cylinder and measured. The measurement results are roughly the same as the simulation results. The fabricated absorber is easy to carry and flexible, such that it can easily be conformed to irregular objects. The proposed absorber is polarization-insensitive, low profile, thin, and portable, so it is easier to apply in a variety of practical fields.


2020 ◽  
Vol 90 ◽  
pp. 69-79 ◽  
Author(s):  
Ting Wu ◽  
Yan-Ming Ma ◽  
Juan Chen ◽  
Li-Li Wang

2020 ◽  
Vol 10 (24) ◽  
pp. 9125
Author(s):  
Houdi Xiao ◽  
Ruiru Qin ◽  
Mingyun Lv ◽  
Chuanzhi Wang

A highly transparent polarization-insensitive metamaterial absorber with wideband microwave absorption is presented. The broadband absorption (6.0~16.7 GHz, absorptance > 85%) is achieved using three patterned resistive metasurfaces. The visible light transmittance of the absorber is as high as 85.7%. The thickness of the absorber is 4.42 mm, which is only 0.088 times of the upper-cutoff wavelength. A prototype sample is fabricated and measured to demonstrate its excellent performance. The experimental results agree well with the simulation results. In view of its wide band absorption, high transmittance, low profile, polarization insensitivity and wide incidence angle stability, the presented absorber has a wide range of potential applications.


Sign in / Sign up

Export Citation Format

Share Document