Co-optimization of the metal gate/high-k stack to achieve high-field mobility >90% of SiO/sub 2/ universal mobility with an EOT=/spl sim/1 nm

2006 ◽  
Vol 27 (3) ◽  
pp. 185-187 ◽  
Author(s):  
Zhibo Zhang ◽  
S.C. Song ◽  
M.A. Quevedo-Lopez ◽  
Kisik Choi ◽  
P. Kirsch ◽  
...  
Keyword(s):  
High K ◽  
2011 ◽  
Vol 55 (1) ◽  
pp. 64-67 ◽  
Author(s):  
W.B. Chen ◽  
C.H. Cheng ◽  
C.W. Lin ◽  
P.C. Chen ◽  
Albert Chin

2020 ◽  
Vol 11 (1) ◽  
pp. 2
Author(s):  
Eitan N. Shauly ◽  
Sagee Rosenthal

The continuous scaling needed for higher density and better performance has introduced some new challenges to the planarity processes. This has resulted in new definitions of the layout coverage rules developed by the foundry and provided to the designers. In advanced technologies, the set of rules considers both the global and the local coverage of the front-end-of line (FEOL) dielectric layers, to the back-end-of-line (BEOL) Cu layers and Al layers, to support high-k/Metal Gate process integration. For advance technologies, a new set of rules for dummy feature insertion was developed by the integrated circuit (IC) manufacturers in order to fulfill coverage limits. New models and utilities for fill insertion were developed, taking into consideration the design coverage, thermal effects, sensitive signal line, critical analog and RF devices like inductors, and double patterning requirements, among others. To minimize proximity effects, cell insertion was also introduced. This review is based on published data from leading IC manufacturers with a careful integration of new experimental data accumulated by the authors. We aim to present a typical foundry perspective. The review provides a detailed description of the chemical mechanical polishing (CMP) process and the coverage dependency, followed by a comprehensive description of coverage rules needed for dielectric, poly, and Cu layers used in advanced technologies. Coverage rules verification data are then presented. RF-related aspects of some rules, like the size and the distance of dummy features from inductors, are discussed with additional design-for-manufacturing layout recommendations as developed by the industry.


1993 ◽  
Vol 297 ◽  
Author(s):  
Qing Gu ◽  
Eric A. Schiff ◽  
Jean Baptiste Chevrier ◽  
Bernard Equer

We have measured the electron drift mobility in a-Si:H at high electric fields (E ≤ 3.6 x 105 V%cm). The a-Si:Hpin structure was prepared at Palaiseau, and incorporated a thickp+ layer to retard high field breakdown. The drift mobility was obtained from transient photocurrent measurements from 1 ns - 1 ms following a laser pulse. Mobility increases as large as a factor of 30 were observed; at 77 K the high field mobility de¬pended exponentially upon field (exp(E/Eu), where E u= 1.1 x 105 V%cm). The same field dependence was observed in the time range 10 ns – 1 μs, indicating that the dispersion parameter change with field was negligible. This latter result appears to exclude hopping in the exponential conduction bandtail as the fundamental transport mechanism in a-Si:H above 77 K; alternate models are briefly discussed.


Sign in / Sign up

Export Citation Format

Share Document