scholarly journals A Behavioral Compact Model for Static Characteristics of 3D NAND Flash Memory

2019 ◽  
Vol 40 (4) ◽  
pp. 558-561 ◽  
Author(s):  
Shubham Sahay ◽  
Dmitri Strukov
2011 ◽  
Vol 50 (10) ◽  
pp. 100204 ◽  
Author(s):  
Myounggon Kang ◽  
Wookghee Hahn ◽  
Il Han Park ◽  
Youngsun Song ◽  
Hocheol Lee ◽  
...  

2011 ◽  
Vol 50 (10R) ◽  
pp. 100204 ◽  
Author(s):  
Myounggon Kang ◽  
Wookghee Hahn ◽  
Il Han Park ◽  
Youngsun Song ◽  
Hocheol Lee ◽  
...  

Author(s):  
Gerardo Malavena

AbstractSince the very first introduction of three-dimensional (3–D) vertical-channel (VC) NAND Flash memory arrays, gate-induced drain leakage (GIDL) current has been suggested as a solution to increase the string channel potential to trigger the erase operation. Thanks to that erase scheme, the memory array can be built directly on the top of a $$n^+$$ n + plate, without requiring any p-doped region to contact the string channel and therefore allowing to simplify the manufacturing process and increase the array integration density. For those reasons, the understanding of the physical phenomena occurring in the string when GIDL is triggered is important for the proper design of the cell structure and of the voltage waveforms adopted during erase. Even though a detailed comprehension of the GIDL phenomenology can be achieved by means of technology computer-aided design (TCAD) simulations, they are usually time and resource consuming, especially when realistic string structures with many word-lines (WLs) are considered. In this chapter, an analysis of the GIDL-assisted erase in 3–D VC nand memory arrays is presented. First, the evolution of the string potential and GIDL current during erase is investigated by means of TCAD simulations; then, a compact model able to reproduce both the string dynamics and the threshold voltage transients with reduced computational effort is presented. The developed compact model is proven to be a valuable tool for the optimization of the array performance during erase assisted by GIDL. Then, the idea of taking advantage of GIDL for the erase operation is exported to the context of spiking neural networks (SNNs) based on NOR Flash memory arrays, which require operational schemes that allow single-cell selectivity during both cell program and cell erase. To overcome the block erase typical of nor Flash memory arrays based on Fowler-Nordheim tunneling, a new erase scheme that triggers GIDL in the NOR Flash cell and exploits hot-hole injection (HHI) at its drain side to accomplish the erase operation is presented. Using that scheme, spike-timing dependent plasticity (STDP) is implemented in a mainstream NOR Flash array and array learning is successfully demonstrated in a prototype SNN. The achieved results represent an important step for the development of large-scale neuromorphic systems based on mature and reliable memory technologies.


2012 ◽  
Vol E95.C (5) ◽  
pp. 837-841 ◽  
Author(s):  
Se Hwan PARK ◽  
Yoon KIM ◽  
Wandong KIM ◽  
Joo Yun SEO ◽  
Hyungjin KIM ◽  
...  

Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 879
Author(s):  
Ruiquan He ◽  
Haihua Hu ◽  
Chunru Xiong ◽  
Guojun Han

The multilevel per cell technology and continued scaling down process technology significantly improves the storage density of NAND flash memory but also brings about a challenge in that data reliability degrades due to the serious noise. To ensure the data reliability, many noise mitigation technologies have been proposed. However, they only mitigate one of the noises of the NAND flash memory channel. In this paper, we consider all the main noises and present a novel neural network-assisted error correction (ANNAEC) scheme to increase the reliability of multi-level cell (MLC) NAND flash memory. To avoid using retention time as an input parameter of the neural network, we propose a relative log-likelihood ratio (LLR) to estimate the actual LLR. Then, we transform the bit detection into a clustering problem and propose to employ a neural network to learn the error characteristics of the NAND flash memory channel. Therefore, the trained neural network has optimized performances of bit error detection. Simulation results show that our proposed scheme can significantly improve the performance of the bit error detection and increase the endurance of NAND flash memory.


Sign in / Sign up

Export Citation Format

Share Document