Enhanced switching characteristics of an ovonic threshold switching device with an ultra-thin MgO interfacial layer

2021 ◽  
pp. 1-1
Author(s):  
Jangseop Lee ◽  
Sangmin Lee ◽  
Myonghoon Kwak ◽  
Wooseok Choi ◽  
Oleksandr Mosendz ◽  
...  
2019 ◽  
Vol 30 (21) ◽  
pp. 215201 ◽  
Author(s):  
Xuanqi Huang ◽  
Runchen Fang ◽  
Chen Yang ◽  
Kai Fu ◽  
Houqiang Fu ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sera Kwon ◽  
Min-Jung Kim ◽  
Kwun-Bum Chung

AbstractTiOx-based resistive switching devices have recently attracted attention as a promising candidate for next-generation non-volatile memory devices. A number of studies have attempted to increase the structural density of resistive switching devices. The fabrication of a multi-level switching device is a feasible method for increasing the density of the memory cell. Herein, we attempt to obtain a non-volatile multi-level switching memory device that is highly transparent by embedding SiO2 nanoparticles (NPs) into the TiOx matrix (TiOx@SiO2 NPs). The fully transparent resistive switching device is fabricated with an ITO/TiOx@SiO2 NPs/ITO structure on glass substrate, and it shows transmittance over 95% in the visible range. The TiOx@SiO2 NPs device shows outstanding switching characteristics, such as a high on/off ratio, long retention time, good endurance, and distinguishable multi-level switching. To understand multi-level switching characteristics by adjusting the set voltages, we analyze the switching mechanism in each resistive state. This method represents a promising approach for high-performance non-volatile multi-level memory applications.


2019 ◽  
Vol 16 (16) ◽  
pp. 20190404-20190404
Author(s):  
Chandreswar Mahata ◽  
Wonwoo Kim ◽  
Shiwhan Kim ◽  
Muhammad Ismail ◽  
Min-Hwi Kim ◽  
...  

Polymers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 527 ◽  
Author(s):  
Hea-Lim Park ◽  
Min-Hoi Kim ◽  
Hyeok Kim

In this study, we developed polymer gate insulator-based organic phototransistors (p-OPTs) with improved optical switching properties by using a hybrid gate insulator configuration. The hybrid gate insulator of our p-OPT has a photoresponsive layer made of poly(4-vinylphenol) (PVP), which enhances the photoresponse, and an interfacial layer of poly(methyl methacrylate) for reliable optical switching of the device. Our hybrid gate insulator-equipped p-OPT exhibits well-defined optical switching characteristics because no specific type of charge is significantly trapped at an interfacial layer/organic semiconductor (OSC) interface. Moreover, our device is more photoresponsive than the conventional p-OPT (here, an OPT with a single-polymer poly(methyl methacrylate) (PMMA) gate insulator), because the characteristic ultraviolet (UV) absorption of the PVP polymer allows the photoresponsive layer and OSC to contribute to the generation of charge carriers when exposed to UV light.


Sign in / Sign up

Export Citation Format

Share Document