Classification Consistency of Concentrated and Relaxed Mental States with EEG Signals

Author(s):  
Shingchern D. You ◽  
Yu-Cheng Wu
Author(s):  
Jing Chen ◽  
Haifeng Li ◽  
Lin Ma ◽  
Hongjian Bo

Emotion detection using EEG signals has advantages in eliminating social masking to obtain a better understanding of underlying emotions. This paper presents the cognitive response to emotional speech and emotion recognition from EEG signals. A framework is proposed to recognize mental states from EEG signals induced by emotional speech: First, speech-evoked emotion cognitive experiment is designed, and EEG dataset is collected. Second, power-related features are extracted using EEMD-HHT, which is more accurate to reflect the instantaneous frequency of the signal than STFT and WT. An extensive analysis of relationships between frequency bands and emotional annotation of stimulus are presented using MIC and statistical analysis. The strongest correlations with EEG signals are found in lateral and medial orbitofrontal cortex (OFC). Finally, the performance of different feature set and classifier combinations are evaluated, and the experiments show that the framework proposed in this paper can effectively recognize emotion from EEG signals with accuracy of 75.7% for valence and 71.4% for arousal.


2019 ◽  
Vol 9 (12) ◽  
pp. 348 ◽  
Author(s):  
Ji-Hoon Jeong ◽  
Baek-Woon Yu ◽  
Dae-Hyeok Lee ◽  
Seong-Whan Lee

Non-invasive brain-computer interfaces (BCI) have been developed for recognizing human mental states with high accuracy and for decoding various types of mental conditions. In particular, accurately decoding a pilot’s mental state is a critical issue as more than 70% of aviation accidents are caused by human factors, such as fatigue or drowsiness. In this study, we report the classification of not only two mental states (i.e., alert and drowsy states) but also five drowsiness levels from electroencephalogram (EEG) signals. To the best of our knowledge, this approach is the first to classify drowsiness levels in detail using only EEG signals. We acquired EEG data from ten pilots in a simulated night flight environment. For accurate detection, we proposed a deep spatio-temporal convolutional bidirectional long short-term memory network (DSTCLN) model. We evaluated the classification performance using Karolinska sleepiness scale (KSS) values for two mental states and five drowsiness levels. The grand-averaged classification accuracies were 0.87 (±0.01) and 0.69 (±0.02), respectively. Hence, we demonstrated the feasibility of classifying five drowsiness levels with high accuracy using deep learning.


2020 ◽  
Author(s):  
Subha D. Puthankattil

The recent advances in signal processing techniques have enabled the analysis of biosignals from brain so as to enhance the predictive capability of mental states. Biosignal analysis has been successfully used to characterise EEG signals of unipolar depression patients. Methods of characterisation of EEG signals and the use of nonlinear parameters are the major highlights of this chapter. Bipolar frontopolar-temporal EEG recordings obtained under eyes open and eyes closed conditions are used for the analysis. A discussion on the reliability of the use of energy distribution and Relative Wavelet Energy calculations for distinguishing unipolar depression patients from healthy controls is presented. The potential of the application of Wavelet Entropy to differentiate states of the brain under normal and pathologic condition is introduced. Details are given on the suitability of ascertaining certain nonlinear indices on the feature extraction, assuming the time series to be highly nonlinear. The assumption of nonlinearity of the measured EEG time series is further verified using surrogate analysis. The studies discussed in this chapter indicate lower values of nonlinear measures for patients. The higher values of signal energy associated with the delta bands of depression patients in the lower frequency range are regarded as a major characteristic indicative of a state of depression. The chapter concludes by presenting the important results in this direction that may lead to better insight on the brain activity and cognitive processes. These measures are hence posited to be potential biomarkers for the detection of depression.


1995 ◽  
Vol 4 (3) ◽  
pp. 171-183 ◽  
Author(s):  
Charles W. Anderson ◽  
Saikumar V. Devulapalli ◽  
Erik A. Stolz

EEG analysis has played a key role in the modeling of the brain's cortical dynamics, but relatively little effort has been devoted to developing EEG as a limited means of communication. If several mental states can be reliably distinguished by recognizing patterns in EEG, then a paralyzed person could communicate to a device such as a wheelchair by composing sequences of these mental states. EEG pattern recognition is a difficult problem and hinges on the success of finding representations of the EEG signals in which the patterns can be distinguished. In this article, we report on a study comparing three EEG representations, the unprocessed signals, a reduced-dimensional representation using the Karhunen – Loève transform, and a frequency-based representation. Classification is performed with a two-layer neural network implemented on a CNAPS server (128 processor, SIMD architecture) by Adaptive Solutions, Inc. Execution time comparisons show over a hundred-fold speed up over a Sun Sparc 10. The best classification accuracy on untrained samples is 73% using the frequency-based representation.


2004 ◽  
Vol 3 (1) ◽  
Author(s):  
Kannathal Natarajan ◽  
Rajendra Acharya U ◽  
Fadhilah Alias ◽  
Thelma Tiboleng ◽  
Sadasivan K Puthusserypady

Entropy ◽  
2019 ◽  
Vol 21 (1) ◽  
pp. 61
Author(s):  
Logan Trujillo

Information-theoretic measures for quantifying multivariate statistical dependence have proven useful for the study of the unity and diversity of the human brain. Two such measures–integration, I(X), and interaction complexity, CI(X)–have been previously applied to electroencephalographic (EEG) signals recorded during ongoing wakeful brain states. Here, I(X) and CI(X) were computed for empirical and simulated visually-elicited alpha-range (8–13 Hz) EEG signals. Integration and complexity of evoked (stimulus-locked) and induced (non-stimulus-locked) EEG responses were assessed using nonparametric k-th nearest neighbor (KNN) entropy estimation, which is robust to the nonstationarity of stimulus-elicited EEG signals. KNN-based I(X) and CI(X) were also computed for the alpha-range EEG of ongoing wakeful brain states. I(X) and CI(X) patterns differentiated between induced and evoked EEG signals and replicated previous wakeful EEG findings obtained using Gaussian-based entropy estimators. Absolute levels of I(X) and CI(X) were related to absolute levels of alpha-range EEG power and phase synchronization, but stimulus-related changes in the information-theoretic and other EEG properties were independent. These findings support the hypothesis that visual perception and ongoing wakeful mental states emerge from complex, dynamical interaction among segregated and integrated brain networks operating near an optimal balance between order and disorder.


Information ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 187
Author(s):  
Shingchern D. You

In this paper, we study the use of EEG (Electroencephalography) to classify between concentrated and relaxed mental states. In the literature, most EEG recording systems are expensive, medical-graded devices. The expensive devices limit the availability in a consumer market. The EEG signals are obtained from a toy-grade EEG device with one channel of output data. The experiments are conducted in two runs, with 7 and 10 subjects, respectively. Each subject is asked to silently recite a five-digit number backwards given by the tester. The recorded EEG signals are converted to time-frequency representations by the software accompanying the device. A simple average is used to aggregate multiple spectral components into EEG bands, such as α, β, and γ bands. The chosen classifiers are SVM (support vector machine) and multi-layer feedforward network trained individually for each subject. Experimental results show that features, with α+β+γ bands and bandwidth 4 Hz, the average accuracy over all subjects in both runs can reach more than 80% and some subjects up to 90+% with the SVM classifier. The results suggest that a brain machine interface could be implemented based on the mental states of the user even with the use of a cheap EEG device.


2020 ◽  
Vol 14 ◽  
Author(s):  
Cédric Simar ◽  
Ana-Maria Cebolla ◽  
Gaëlle Chartier ◽  
Mathieu Petieau ◽  
Gianluca Bontempi ◽  
...  

Interactions between two brains constitute the essence of social communication. Daily movements are commonly executed during social interactions and are determined by different mental states that may express different positive or negative behavioral intent. In this context, the effective recognition of festive or violent intent before the action execution remains crucial for survival. Here, we hypothesize that the EEG signals contain the distinctive features characterizing movement intent already expressed before movement execution and that such distinctive information can be identified by state-of-the-art classification algorithms based on Riemannian geometry. We demonstrated for the first time that a classifier based on covariance matrices and Riemannian geometry can effectively discriminate between neutral, festive, and violent mental states only on the basis of non-invasive EEG signals in both the actor and observer participants. These results pave the way for new electrophysiological discrimination of mental states based on non-invasive EEG recordings and cutting-edge machine learning techniques.


Sign in / Sign up

Export Citation Format

Share Document