Optical-Feedback Cavity-Enhanced Absorption Spectroscopy Using a Short-Cavity Vertical-External-Cavity Surface-Emitting Laser

2010 ◽  
Vol 22 (21) ◽  
pp. 1607-1609 ◽  
Author(s):  
Peter Cermak ◽  
Meriam Triki ◽  
Arnaud Garnache ◽  
Laurent Cerutti ◽  
Daniele Romanini
2017 ◽  
Vol 10 (5) ◽  
pp. 1803-1812 ◽  
Author(s):  
Irène Ventrillard ◽  
Irène Xueref-Remy ◽  
Martina Schmidt ◽  
Camille Yver Kwok ◽  
Xavier Faïn ◽  
...  

Abstract. We present the first comparison of carbon monoxide (CO) measurements performed with a portable laser spectrometer that exploits the optical-feedback cavity-enhanced absorption spectroscopy (OF-CEAS) technique, against a high-performance automated gas chromatograph (GC) with a mercuric oxide reduction gas detector (RGD). First, measurements of atmospheric CO mole fraction were continuously collected in a Paris (France) suburb over 1 week. Both instruments showed an excellent agreement within typically 2 ppb (part per billion in volume), fulfilling the World Meteorological Organization (WMO) recommendation for CO inter-laboratory comparison. The compact size and robustness of the OF-CEAS instrument allowed its operation aboard a small aircraft employed for routine tropospheric air analysis over the French Orléans forest area. Direct OF-CEAS real-time CO measurements in tropospheric air were then compared with later analysis of flask samples by the gas chromatograph. Again, a very good agreement was observed. This work establishes that the OF-CEAS laser spectrometer can run unattended at a very high level of sensitivity ( <  1 ppb) and stability without any periodic calibration.


Sign in / Sign up

Export Citation Format

Share Document