Autonomous Raman Amplifiers using Standard Integrated Network Equipment

Author(s):  
Giacomo Borraccini ◽  
Stefano Staullu ◽  
Stefano Piciaccia ◽  
Alberto Tanzi ◽  
Antonino Nespola ◽  
...  
2010 ◽  
Vol 24 (3) ◽  
pp. 161-172 ◽  
Author(s):  
Edmund Wascher ◽  
C. Beste

Spatial selection of relevant information has been proposed to reflect an emergent feature of stimulus processing within an integrated network of perceptual areas. Stimulus-based and intention-based sources of information might converge in a common stage when spatial maps are generated. This approach appears to be inconsistent with the assumption of distinct mechanisms for stimulus-driven and top-down controlled attention. In two experiments, the common ground of stimulus-driven and intention-based attention was tested by means of event-related potentials (ERPs) in the human EEG. In both experiments, the processing of a single transient was compared to the selection of a physically comparable stimulus among distractors. While single transients evoked a spatially sensitive N1, the extraction of relevant information out of a more complex display was reflected in an N2pc. The high similarity of the spatial portion of these two components (Experiment 1), and the replication of this finding for the vertical axis (Experiment 2) indicate that these two ERP components might both reflect the spatial representation of relevant information as derived from the organization of perceptual maps, just at different points in time.


2011 ◽  
Vol E94-B (2) ◽  
pp. 417-424 ◽  
Author(s):  
Masato YOSHIDA ◽  
Seiji OKAMOTO ◽  
Tatsunori OMIYA ◽  
Keisuke KASAI ◽  
Masataka NAKAZAWA

Author(s):  
Irina Strelkovskay ◽  
Irina Solovskaya ◽  
Anastasija Makoganjuk ◽  
Nikolaj Severin

The problem of forecasting self-similar traffic, which is characterized by a considerable number of ripples and the property of long-term dependence, is considered. It is proposed to use the method of spline extrapolation using linear and cubic splines. The results of self-similar traffic prediction were obtained, which will allow to predict the necessary size of the buffer devices of the network nodes in order to avoid congestion in the network and exceed the normative values ​​of QoS quality characteristics. The solution of the problem of self-similar traffic forecasting obtained with the Simulink software package in Matlab environment is considered. A method of extrapolation based on spline functions is developed. The proposed method has several advantages over the known methods, first of all, it is sufficient ease of implementation, low resource intensity and accuracy of prediction, which can be enhanced by the use of quadratic or cubic interpolation spline functions. Using the method of spline extrapolation, the results of self-similar traffic prediction were obtained, which will allow to predict the required volume of buffer devices, thereby avoiding network congestion and exceeding the normative values ​​of QoS quality characteristics. Given that self-similar traffic is characterized by the presence of "bursts" and a long-term dependence between the moments of receipt of applications in this study, given predetermined data to improve the prediction accuracy, it is possible to use extrapolation based on wavelet functions, the so-called wavelet-extrapolation method. Based on the results of traffic forecasting, taking into account the maximum values ​​of network node traffic, you can give practical guidance on how traffic is redistributed across the network. This will balance the load of network objects and increase the efficiency of network equipment.


2002 ◽  
Vol 20 (2) ◽  
pp. 250-254 ◽  
Author(s):  
V.E. Perlin ◽  
H.G. Winful

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sinead M. O’Donovan ◽  
Ali Imami ◽  
Hunter Eby ◽  
Nicholas D. Henkel ◽  
Justin Fortune Creeden ◽  
...  

AbstractThe COVID-19 pandemic caused by the novel SARS-CoV-2 is more contagious than other coronaviruses and has higher rates of mortality than influenza. Identification of effective therapeutics is a crucial tool to treat those infected with SARS-CoV-2 and limit the spread of this novel disease globally. We deployed a bioinformatics workflow to identify candidate drugs for the treatment of COVID-19. Using an “omics” repository, the Library of Integrated Network-Based Cellular Signatures (LINCS), we simultaneously probed transcriptomic signatures of putative COVID-19 drugs and publicly available SARS-CoV-2 infected cell lines to identify novel therapeutics. We identified a shortlist of 20 candidate drugs: 8 are already under trial for the treatment of COVID-19, the remaining 12 have antiviral properties and 6 have antiviral efficacy against coronaviruses specifically, in vitro. All candidate drugs are either FDA approved or are under investigation. Our candidate drug findings are discordant with (i.e., reverse) SARS-CoV-2 transcriptome signatures generated in vitro, and a subset are also identified in transcriptome signatures generated from COVID-19 patient samples, like the MEK inhibitor selumetinib. Overall, our findings provide additional support for drugs that are already being explored as therapeutic agents for the treatment of COVID-19 and identify promising novel targets that are worthy of further investigation.


Sign in / Sign up

Export Citation Format

Share Document