Distributed PDOP Coverage Control: Providing Large-scale Positioning Service using a Multi-robot System

Author(s):  
Liang Zhang ◽  
Zexu Zhang ◽  
Roland Siegwart ◽  
Jen Jen Chung
Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 841
Author(s):  
Lin Chen ◽  
Yongting Zhao ◽  
Huanjun Zhao ◽  
Bin Zheng

This paper presents a novel decentralized multi-robot collision avoidance method with deep reinforcement learning, which is not only suitable for the large-scale grid map workspace multi-robot system, but also directly processes Lidar signals instead of communicating between the robots. According to the particularity of the workspace, we handcrafted a reward function, which considers both the collision avoidance among the robots and as little as possible change of direction of the robots during driving. Using Double Deep Q-Network (DDQN), the policy was trained in the simulation grid map workspace. By designing experiments, we demonstrated that the learned policy can guide the robot well to effectively travel from the initial position to the goal position in the grid map workspace and to avoid collisions with others while driving.


Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2552 ◽  
Author(s):  
Josef Franko ◽  
Shengzhi Du ◽  
Stephan Kallweit ◽  
Enno Duelberg ◽  
Heiko Engemann

The maintenance of wind turbines is of growing importance considering the transition to renewable energy. This paper presents a multi-robot-approach for automated wind turbine maintenance including a novel climbing robot. Currently, wind turbine maintenance remains a manual task, which is monotonous, dangerous, and also physically demanding due to the large scale of wind turbines. Technical climbers are required to work at significant heights, even in bad weather conditions. Furthermore, a skilled labor force with sufficient knowledge in repairing fiber composite material is rare. Autonomous mobile systems enable the digitization of the maintenance process. They can be designed for weather-independent operations. This work contributes to the development and experimental validation of a maintenance system consisting of multiple robotic platforms for a variety of tasks, such as wind turbine tower and rotor blade service. In this work, multicopters with vision and LiDAR sensors for global inspection are used to guide slower climbing robots. Light-weight magnetic climbers with surface contact were used to analyze structure parts with non-destructive inspection methods and to locally repair smaller defects. Localization was enabled by adapting odometry for conical-shaped surfaces considering additional navigation sensors. Magnets were suitable for steel towers to clamp onto the surface. A friction-based climbing ring robot (SMART— Scanning, Monitoring, Analyzing, Repair and Transportation) completed the set-up for higher payload. The maintenance period could be extended by using weather-proofed maintenance robots. The multi-robot-system was running the Robot Operating System (ROS). Additionally, first steps towards machine learning would enable maintenance staff to use pattern classification for fault diagnosis in order to operate safely from the ground in the future.


2021 ◽  
Vol 11 (2) ◽  
pp. 546
Author(s):  
Jiajia Xie ◽  
Rui Zhou ◽  
Yuan Liu ◽  
Jun Luo ◽  
Shaorong Xie ◽  
...  

The high performance and efficiency of multiple unmanned surface vehicles (multi-USV) promote the further civilian and military applications of coordinated USV. As the basis of multiple USVs’ cooperative work, considerable attention has been spent on developing the decentralized formation control of the USV swarm. Formation control of multiple USV belongs to the geometric problems of a multi-robot system. The main challenge is the way to generate and maintain the formation of a multi-robot system. The rapid development of reinforcement learning provides us with a new solution to deal with these problems. In this paper, we introduce a decentralized structure of the multi-USV system and employ reinforcement learning to deal with the formation control of a multi-USV system in a leader–follower topology. Therefore, we propose an asynchronous decentralized formation control scheme based on reinforcement learning for multiple USVs. First, a simplified USV model is established. Simultaneously, the formation shape model is built to provide formation parameters and to describe the physical relationship between USVs. Second, the advantage deep deterministic policy gradient algorithm (ADDPG) is proposed. Third, formation generation policies and formation maintenance policies based on the ADDPG are proposed to form and maintain the given geometry structure of the team of USVs during movement. Moreover, three new reward functions are designed and utilized to promote policy learning. Finally, various experiments are conducted to validate the performance of the proposed formation control scheme. Simulation results and contrast experiments demonstrate the efficiency and stability of the formation control scheme.


2021 ◽  
Vol 11 (4) ◽  
pp. 1448
Author(s):  
Wenju Mao ◽  
Zhijie Liu ◽  
Heng Liu ◽  
Fuzeng Yang ◽  
Meirong Wang

Multi-robots have shown good application prospects in agricultural production. Studying the synergistic technologies of agricultural multi-robots can not only improve the efficiency of the overall robot system and meet the needs of precision farming but also solve the problems of decreasing effective labor supply and increasing labor costs in agriculture. Therefore, starting from the point of view of an agricultural multiple robot system architectures, this paper reviews the representative research results of five synergistic technologies of agricultural multi-robots in recent years, namely, environment perception, task allocation, path planning, formation control, and communication, and summarizes the technological progress and development characteristics of these five technologies. Finally, because of these development characteristics, it is shown that the trends and research focus for agricultural multi-robots are to optimize the existing technologies and apply them to a variety of agricultural multi-robots, such as building a hybrid architecture of multi-robot systems, SLAM (simultaneous localization and mapping), cooperation learning of robots, hybrid path planning and formation reconstruction. While synergistic technologies of agricultural multi-robots are extremely challenging in production, in combination with previous research results for real agricultural multi-robots and social development demand, we conclude that it is realistic to expect automated multi-robot systems in the future.


Author(s):  
Muhammad Fadhil Ginting ◽  
Kyohei Otsu ◽  
Jeffrey Edlund ◽  
Jay Gao ◽  
Ali-akbar Agha-mohammadi

Sign in / Sign up

Export Citation Format

Share Document