Spatial Correlations of a 3-D Non-Stationary MIMO Channel Model With 3-D Antenna Arrays and 3-D Arbitrary Trajectories

2019 ◽  
Vol 8 (2) ◽  
pp. 512-515 ◽  
Author(s):  
Qiuming Zhu ◽  
Ying Yang ◽  
Cheng-Xiang Wang ◽  
Yi Tan ◽  
Jian Sun ◽  
...  
Author(s):  
Jianzheng Li ◽  
Fei Li ◽  
Wei Ji ◽  
Yulong Zou ◽  
Chunguo Li

In this paper a three-dimension (3D) multiple-input multiple-output (MIMO) channel model is derived by considering the elevation dimension and the azimuth dimension together. To get a more accurate performance analysis for 3D MIMO channel, both Tx and Rx correlation matrices are derived, respectively, in closed form, which consist of 3D Kronecker channel model. This novel 3D Kronecker channel model is developed for arbitrary antenna arrays with non-isotropic antenna patterns and also for any propagation environment of 3D MIMO systems. In order to quantify the performance of 3D MIMO systems, the capacity in multi-user cases is analyzed. Simulation results validate the proposed 3D Kronecker channel model and study the impact of elevation and azimuth angular spread and that of Rx antenna element spacing on the correlation. The proposed capacity analysis in multi-user cases for 3D MIMO systems is also verified by simulation.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Kai Zhang ◽  
Fangqi Zhang ◽  
Guoxin Zheng ◽  
Lei Cang

With the rapid development of high-mobility wireless communication systems, e.g., high-speed train (HST) and metro wireless communication systems, more and more attention has been paid to the wireless communication technology in tunnel-like scenarios. In this paper, we propose a three-dimensional (3D) nonstationary multiple-input multiple-output (MIMO) channel model with high-mobility wireless communication systems using leaky coaxial cable (LCX) inside a rectangular tunnel over the 1.8 GHz band. Taking into account single-bounce scattering under line-of-sight (LoS) and non-line-of-sight (NLoS) propagations condition, the analytical expressions of the channel impulse response (CIR) and temporal correlation function (T-CF) are derived. In the proposed channel model, it is assumed that a large number of scatterers are randomly distributed on the sidewall of the tunnel and the roof of the tunnel. We analyze the impact of various model parameters, including LCX spacing, time separation, movement velocity of Rx, and K-factor, on the T-CF of the MIMO channel model. For HST, the results of some further studies on the maximum speed of 360 km/h are given. By comparing the T-CF between the dipole MIMO system and the LCX-MIMO system, we can see that the performance of the LCX-MIMO system is better than that of the dipole MIMO system.


2013 ◽  
Vol 712-715 ◽  
pp. 1741-1745
Author(s):  
Hao Cai ◽  
Dan Ao Han

Based on the special correlation of antennas and the power delay profile (PDP) of the cluster model, six models of A-F have been established by the TGn task-group in total. On the basis of the new broadband wireless local area network (WLAN) standard--IEEE 802.11ac with larger bandwidth and multi-user requirements drawn up by the TGac task-group, in this paper, the IEEE 802.11ac channel model is set up by means of improving and simulating the indoor MIMO channel.


Sign in / Sign up

Export Citation Format

Share Document