Kinematic and dynamic optimizations of the redundant manipulator via local degrees of freedom

Author(s):  
Yushu Bian ◽  
Zhihui Gao ◽  
Min Liu
2016 ◽  
Vol 40 (3) ◽  
pp. 383-397 ◽  
Author(s):  
Bahman Nouri Rahmat Abadi ◽  
Sajjad Taghvaei ◽  
Ramin Vatankhah

In this paper, an optimal motion planning algorithm and dynamic modeling of a planar kinematically redundant manipulator are considered. Kinematics of the manipulator is studied, Jacobian matrix is obtained and the dynamic equations are derived using D’Alembert’s principle. Also, a novel actuation method is introduced and applied to the 3-PRPR planar redundant manipulator. In this approach, the velocity of actuators is determined in such a way to minimize the 2-norm of the velocity vector, subjected to the derived kinematic relations as constraints. Having the optimal motion planning, the motion is controlled via a feedback linearization controller. The motion of the manipulator is simulated and the effectiveness of the proposed actuation strategy and the designed controller is investigated.


Author(s):  
V. C. Ravi ◽  
Subrata Rakshit ◽  
Ashitava Ghosal

Hyper-redundant robots are characterized by the presence of a large number of actuated joints, many more than the number required to perform a given task. These robots have been proposed and used for many application involving avoiding obstacles or, in general, to provide enhanced dexterity in performing tasks. Making effective use of the extra degrees of freedom or resolution of redundancy have been an extensive topic of research and several methods have been proposed in literature. In this paper, we compare three known methods and show that an algorithm based on a classical curve called the tractrix leads to a more ‘natural’ motion of the hyper-redundant robot with the displacements diminishing from the end-effector to the fixed base. In addition, since the actuators at the base ‘see’ the inertia of all links, smaller motion of the actuators nearer to the base results in a smoother motion of the end-effector as compared to other two approaches. We present simulation and experimental results performed on a prototype eight link planar hyper-redundant manipulator.


2004 ◽  
Vol 16 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Shugen Ma ◽  
◽  
Mitsuru Watanabe ◽  

Hyper-redundant manipulators have high number of kinematic degrees of freedom, and possess unconventional features such as the ability to enter narrow spaces while avoiding obstacles. To control these hyper-redundant manipulators accurately, manipulator dynamics should be considered. This is, however, time-comsuming and makes implementation of real-time control difficult. In this paper, we propose a dynamic control scheme for hyper-redundant manipulators, which is based on analysis in defined posture space where three parameters were used to determine the manipulator posture. Manipulator dynamics are modeled on the parameterized form with the parameter of the posture space path. The posture space path-tracking feed-forward controller is then formulated on the basis of a parameterized dynamic equation. Computer simulation, in which a hyper-redundant manipulator traces the posture space path well by using the proposed feed-forward controller, proved that the hyper-redundant manipulator tracks the workspace path accurately.


Author(s):  
A Bayram ◽  
M Kemal Özgören

The hyper redundant manipulators (HRMs) have excessively many degrees of freedom. As a special but practicable subset of them, the binary hyper-redundant manipulators (BHRMs) use binary (on–off) actuators with only two stable states such as pneumatic cylinders and/or solenoids. This article describes the conceptual design of a spatial BHRM together with its forward kinematics. This BHRM consists of many modules with the same constructive characteristics. The modules increase in size from the tip to the base so that the actuator powers also increase in the same order. Each module consists of three submodules. The first and second submodules have the shapes of variable geometry trusses and they work in mutually orthogonal planes. The third submodule is a discrete twister. The manipulator is assumed to be driven by pneumatic on–off actuators. Because of the discrete nature of the on–off actuators, a small but continuously actuated six-joint manipulator is installed as the last module of the BHRM in order to compensate the discretization errors.


2020 ◽  
Author(s):  
Chen Li ◽  
Ying Ma ◽  
Yu Zhang ◽  
Jinguo Liu

Abstract A super redundant serpentine manipulator has slender structure and multiple degrees of freedom and can travel through narrow space and move in complex space. This manipulator is composed of many modules that can form different lengths of robot arms for different application sites. The increase in degrees of freedom causes the inverse kinematics of redundant manipulator to be typical and immensely increases the calculation load in the joint space. This paper presents a composite optimization method of path planning for obstacle avoidance and discrete trajectory tracking of a super redundant manipulator. In this composite optimization, path planning is established on a Bezier curve, particle swarm optimization is adopted to adjust the control points of the Bezier curve with the kinematic constraints of manipulator, and a feasible obstacle avoidance path is obtained along with a discrete trajectory tracking using a follow-the-leader strategy. The relative distance between each two discrete path points is limited to reduce the fitting error of the connecting rigid links to the smooth curve. Simulation results show that this composite optimization method can rapidly search for the appropriate trajectory to guide the manipulator in obtaining the target while achieving obstacle avoidance and meeting joint constraints. The proposed algorithm is suitable for 3D space obstacle avoidance and multitarget path tracking.


1993 ◽  
Vol 5 (1) ◽  
pp. 44-53
Author(s):  
Naoshi KONDO ◽  
Mitsuji MONTA ◽  
Tateshi FUJIURA ◽  
Yasunori SHIBANO ◽  
Kentaro MOHRI ◽  
...  

Author(s):  
Gregory S. Chirikjian

Abstract The most efficient methods for representing dynamics in the literature require serial computations which are proportional to the number of manipulator degrees-of-freedom. Furthermore, these methods are not fully parallelizable. For ‘hyper-redundant’ manipulators, which may have tens, hundreds, or thousands of actuators, these formulations preclude real time implementation. This paper therefore looks at the mechanics of hyper-redundant manipulators from the point of view of an approximation to an ‘infinite degree-of-freedom’ (or continuum) problem. The dynamics for this infinite dimensional case is developed. The approximate dynamics of actual hyper-redundant manipulators is then reduced to a problem which is O(1) in the number of serial computations, i.e., the algorithm is O(n) in the total number of computations, but these computations are completely parallelizable. This is achieved by ‘projecting’ the dynamics of the continuum model onto the actual robotic structure. The results are compared with a lumped mass model of a particular hyper-redundant manipulator. It is found that the continuum model can be used to generate joint torques to within ten percent of values computed from the lumped mass model.


2018 ◽  
Vol 8 (11) ◽  
pp. 2229 ◽  
Author(s):  
Michal Kelemen ◽  
Ivan Virgala ◽  
Tomáš Lipták ◽  
Ľubica Miková ◽  
Filip Filakovský ◽  
...  

Kinematically-redundant manipulators present considerable difficulties, especially from the view of control. A high number of degrees of freedom are used to control so-called secondary tasks in order to optimize manipulator motion. This paper introduces a new algorithm for the control of kinematically-redundant manipulator considering three secondary tasks, namely a joint limit avoidance task, a kinematic singularities avoidance task, and an obstacle avoidance task. For path planning of end-effector from start to goal point, the potential field method is used. The final inverse kinematic model is designed by a Jacobian-based method considering weight matrices in order to prioritize particular tasks. Our approach is based on the flexible behavior of priority value due to the acceleration of numerical simulation. The results of the simulations show the advantage of our approach, which results in a significant decrease of computing time.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Sérgio Ricardo Xavier da Silva ◽  
Leizer Schnitman ◽  
Vitalino Cesca Filho

This article presents a solution of the inverse kinematics problem of 7-degrees-of-freedom serial redundant manipulators. A 7-degrees-of-freedom (7-DoF) redundant manipulator can avoid obstacles and thus improve operational performance. However, its inverse kinematics is difficult to solve since it has one more DoF than that necessary for reaching the whole workspace, which causes infinite solutions. In this article, Gröbner bases theory is proposed to solve the inverse kinematics. First, the Denavit–Hartenberg model for the manipulator is established. Second, different joint configurations are obtained using Gröbner bases theory. All solutions are confirmed with the aid of algebraic computing software, confirming that this method is accurate and easy to be implemented.


Sign in / Sign up

Export Citation Format

Share Document