A novel design methodology for bandpass frequency selective surfaces using complementary loading structure

Author(s):  
Shunli Li ◽  
Liguo Liu
Electronics ◽  
2021 ◽  
Vol 10 (16) ◽  
pp. 1938
Author(s):  
Jeong-Hyun Park ◽  
Jae-Gon Lee

In this paper, the novel design methodology of 2-D beam focusing control based on passive frequency selective surface (FSS) is proposed and described. The beam focusing antenna is composed of 1-D array source and 2-D FSS having a good transmittance and a full transmission phase variation of 360°. The 2-D FSS is designed to make the phase of wave radiated by one source be in-phase, so the transmission phase of the 2-D FSS is concave in itself. Then, the designed 2-D FSS is integrated to the 1-D array source and the longitudinal and the transverse beam focusing controls can be achieved by changing the phase shape of the array source. The relation between the focusing point and the phase combination of the sources is analyzed by a parabolic formula, and the performance of the beam focusing control system is confirmed by both simulation and measurement. From both results, it is concluded that the focusing spot can be tuned longitudinally and transversely by the proposed methodology at 5.8 GHz. In addition, the electric field intensity of 1-D array source with 2-D FSS increases by about 35% compared to that of only 1-D array source.


2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Clarissa de Lucena Nóbrega ◽  
Marcelo Ribeiro da Silva ◽  
Paulo Henrique da Fonseca Silva ◽  
Adaildo Gomes D’Assunção ◽  
Gláucio Lima Siqueira

This paper presents a design methodology for frequency selective surfaces (FSSs) using metallic patches with dissimilar Sierpinski fractal elements. The transmission properties of the spatial filters are investigated for FSS structures composed of two alternately integrated dissimilar Sierpinski fractal elements, corresponding to fractal levelsk=1, 2, and 3. Two FSS prototypes are fabricated and measured in the range from 2 to 12 GHz to validate the proposed fractal designs. The FSSs with dissimilar Sierpinski fractal patch elements are printed on RT/Duroid 6202 high frequency laminate. The experimental characterization of the FSS prototypes is accomplished through two different measurement setups composed of commercial horns and elliptical monopole microstrip antennas. The obtained results confirm the compactness and multiband performance of the proposed FSS geometries, caused by the integration of dissimilar fractal element. In addition, the proposed FSSs exhibited frequency tuning ability on the multiband frequency responses. Agreement between simulated and measured results is reported.


2018 ◽  
Vol 7 (5) ◽  
pp. 101-110 ◽  
Author(s):  
K. K. Varikuntla ◽  
R. Singarav

The spectacular development of frequency selective surfaces (FSS) as a spatial filter, absorbers and reflectors made them feasible for the aerospace and defence applications. The intervention of substrate integrated waveguide (SIW) technology into FSS results in the improvement of unit cell structures and better performance by isolating them from inter-element interference. Such FSS structures with SIW cavities upholds the FSS properties and improves their selectivity and performance. Considering the diversity in applications of introducing SIW cavity technology into FSS, the aim of this paper is to furnish a study on the glimpse of EM design techniques to analyze this type of structures. Design topologies of narrowing bandwidth, dual resonance, the design of FSS with sharp sideband edges and frequency selective polarization rotating structures are presented. Further, a novel design for improving the bandwidth of reflective FSS is discussed based on SIW technology. Fabrication techniques pertaining to this type of structures are presented in brief.


1988 ◽  
Vol 24 (14) ◽  
pp. 901 ◽  
Author(s):  
A.M.M.A. Allam ◽  
E.A. Parker

Sign in / Sign up

Export Citation Format

Share Document