A vehicle-density-based forwarding scheme for emergency message broadcasts in VANETs

Author(s):  
Yu-Tian Tseng ◽  
Rong-Hong Jan ◽  
Chien Chen ◽  
Chu-Fu Wang ◽  
Hsia-Hsin Li
Keyword(s):  
2021 ◽  
Vol 10 (3) ◽  
pp. 177
Author(s):  
Haochen Zou ◽  
Keyan Cao ◽  
Chong Jiang

Urban road traffic spatio-temporal characters reflect how citizens move and how goods are transported, which is crucial for trip planning, traffic management, and urban design. Video surveillance camera plays an important role in intelligent transport systems (ITS) for recognizing license plate numbers. This paper proposes a spatio-temporal visualization method to discover urban road vehicle density, city-wide regional vehicle density, and hot routes using license plate number data recorded by video surveillance cameras. To improve the accuracy of the visualization effect, during data analysis and processing, this paper utilized Internet crawler technology and adopted an outlier detection algorithm based on the Dixon detection method. In the design of the visualization map, this paper established an urban road vehicle traffic index to intuitively and quantitatively reveal the traffic operation situation of the area. To verify the feasibility of the method, an experiment in Guiyang on data from road video surveillance camera system was conducted. Multiple urban traffic spatial and temporal characters are recognized concisely and efficiently from three visualization maps. The results show the satisfactory performance of the proposed framework in terms of visual analysis, which will facilitate traffic management and operation.


Author(s):  
Takamasa Koshizen ◽  
Fumiaki Sato ◽  
Ryoka Oishi ◽  
Kazuhiko Yamakawa

2018 ◽  
Vol 11 (1) ◽  
pp. 1
Author(s):  
Supiyono, Dwi Ratnaningsih, Rudy Ariyanto

Abstract Highway in Malang there that needs to be analyzed is Intersections Letjend S. Parman Street – Ciliwung Street and Letjend Sutoyo Street – Letjend Selorejo. The road is an arterial road in the city of Malang with a high vehicle density level (Saputra, 2013). The Street was a high traffic flow led to queues or long saturated flow that is not supported by the settings of the light signals in accordance with the conditions in the field so often causes congestion. From finding a solution the traffic density in the study Letjend S Parman Street – Ciliwung Street and Letjend Sutoyo Street – Letjend Selorejo with Indonesia Highway Capasity Manual (IHCM). After stages 3-signal coordination calculation in Ciliwung Intersection of Malang, Intersection obtained time peak hours at the intersection area occurred at 11.00 – 12.00 GMT. Performance 3-waay junction on the Ciliwung Malang at this time has not met the target. Seen from there is still a Degree of Saturation (DS) which do not meet the targets ( ≤ 0,75), namely 0,83. After having don e engineering into 3 phases and cycle time 100 minutes Degree of Saturation (DS) be 0,77. Keywords: intersection, peak hours, capacity and degree saturation


2021 ◽  
Vol 9 (1) ◽  
pp. 55-62
Author(s):  
Geoferleen Flores ◽  
◽  
Eduardo Jr. Piedad ◽  
Anzeneth Figueroa ◽  
Romari Tumamak ◽  
...  

Traffic flow mismanagement is a significant challenge in all countries especially in crowded cities. An alternative solution is to utilize smart technologies to predict traffic flow. In this study, frequency spectrum describing traffic sound characteristics is used as an indicator to predict the next five-minute vehicle density. Sound frequency and vehicle intensity are collected during a thirteen-hour data gathering. The collected sound intensity and frequency are then used to learn three machine-learning models - support vector machine, artificial neural network, and random forest and to predict vehicle intensity. It was found out that the performances of the three models based on root-mean-square-error values are 12.97, 16.01, and 10.67, respectively. These initial and satisfactory results pave a new way to predict traffic flow based on traffic sound characteristics which may serve as a better alternative to conventional features.


Author(s):  
Pant Varun Prakash ◽  
Saumya Tripathi ◽  
Raghavendra Pal ◽  
Arun Prakash

This article proposes a slotted multichannel medium access control (SMMAC) protocol for VANETs to reduce CCH congestion, decrease RSU dependency, increase safety and data packet's reliability and improve fairness among vehicles. The main entity is the cluster head that not only notifies all the vehicles under the same cluster about the present state of service channel and future data transmissions but also imposes a condition on the maximum number of vehicles allowed inside a cluster. Controlled vehicle density reduces CCH collisions and as a result, it makes the protocol better in terms of packet delivery. To eliminate the inter-cluster hidden terminal problem, in the proposed algorithm, each cluster uses a service channel different from its neighboring cluster. Analyzing the system for both dense and sparse scenario it can be seen through simulation results that the proposed protocol performs much better in comparison to IEEE 802.11p with respect to Throughput, PDR and Delay.


Sign in / Sign up

Export Citation Format

Share Document