Frequency-shaping observer-based controller design for actuator degradation: Application to suspension system

Author(s):  
Manh-Hung Do ◽  
Damien Koenig ◽  
Didier Theilliol ◽  
Peter Gaspar
2011 ◽  
Vol 403-408 ◽  
pp. 4800-4805 ◽  
Author(s):  
A. R. Paarya ◽  
H. Zarabadipour

In this paper the digital controller design for vehicle suspension system, based on a half-car model using singular perturbed systems is considered. This strategy is based on the slow and fast subsystems controller design. The simulation results show them favorable performance of the controller and achieve fast and good response.


Author(s):  
O. Tolga Altinoz

In this study, the PID tuning method (controller design scheme) is proposed for a linear quarter model of active suspension system installed on the vehicles. The PID tuning scheme is considered as a multiobjective problem which is solved by converting this multiobjective problem into single objective problem with the aid of scalarization approaches. In the study, three different scalarization approaches are used and compared to each other. These approaches are called linear scalarization (weighted sum), epsilon-constraint and Benson’s methods. The objectives of multiobjective optimization are selected from the time-domain properties of the transient response of the system which are overshoot, rise time, peak time and error (in total there are four objectives). The aim of each objective is to minimize the corresponding property of the time response of the system. First, these four objective is applied to the scalarization functions and then single objective problem is obtained. Finally, these single objective problems are solved with the aid of heuristic optimization algorithms. For this purpose, four optimization algorithms are selected, which are called Particle Swarm Optimization, Differential Evolution, Firefly, and Cultural Algorithms. In total,twelve implementations are evaluated with the same number of iterations. In this study, the aim is to compare the scalarization approaches and optimization algorithm on active suspension control problem. The performance of the corresponding cases (implementations) are numerically and graphically demonstrated on transient responses of the system.


2012 ◽  
Vol 189 ◽  
pp. 364-368
Author(s):  
Zhao Yuan Wang ◽  
Guo Qing Wu

The magnetic suspension system is a strong nonlinear, uncertain and open-loop unstable system. All of these factors have increased the difficulty of maglev controller design. Considering the single freedom maglev system as the research object in this paper, structure analysis and modeling design are conducted for the system. By choosing new state variables, the system model is transformed. On the basis of that, we use back stepping design method to design the nonlinear suspension controller. Control performance of the controller can be observed by the Matlab/Simulink simulation.


2009 ◽  
Vol 31 (1) ◽  
pp. 71-95 ◽  
Author(s):  
C. Onat ◽  
I.B. Kucukdemiral ◽  
S. Sivrioglu ◽  
I. Yuksek ◽  
G. Cansever

Sign in / Sign up

Export Citation Format

Share Document