Analysis of Stability Enhancement of Soldier Pile Retaining Wall

Author(s):  
G Athmarajah ◽  
L.I.N. De Silva
2014 ◽  
Vol 567 ◽  
pp. 457-462
Author(s):  
Nur Akmilah ◽  
Ong Chong Yong

Gabions, rubble stone walls, L-shape concrete retaining wall and revetments are commonly used for riverbank protection against base scouring and soil slope erosion. These conventional solutions for low retaining wall structures are relatively cheap and easy to execute. However, they are proven not lasting with high maintenance costs. Although steel sheetpile walls are structures with better performance for slope stabilization purpose, they are very expensive to build and maintain against corrosion. To address the problem, a new precast concrete soldier pile wall system was developed to provide a permanent and relatively economical solution with several innovative features. The system is comprised of a series of precast posts driven to the predetermined depth and secondary precast lagging elements secured between posts to support the retained earths. The structural capacity that resists lateral load is derived from passive earth pressure mobilized in front the embedded body to toe of the posts. The lagging elements are installed at 0.5m to 1.0m below the river invert levels to provide protection against base scouring. The precast posts and laggings take the efficient structural shape of corrugated section. They are jointed with a specially designed tongue and groove (T&G) slots to facilitate installation. A pilot project where such innovative solution is presented.


2021 ◽  
Author(s):  
James Cumming

A soldier pile and lagging wall is one of the most common types of retaining wall. Solider pile walls develop lateral resistance through the stiffness of the piles and the passive resistance of the soil acting upon the embedded portion of the piles. Ground anchors can also be used when additional lateral resistance is required. Using Broms’ methods, a parametric study was completed to investigate the performance of laterally loaded short and long steel piles installed in a variety of cohesive and cohesionless soils. The results were compared to those generated using RocScience finite element software. RocScience software was then used to evaluate the lateral resistance of piles installed at various distances from the crest of a 2:1 slope. Finally, two soldier pile walls, to be installed within a sloping railway embankment, were designed.


2021 ◽  
Author(s):  
James Cumming

A soldier pile and lagging wall is one of the most common types of retaining wall. Solider pile walls develop lateral resistance through the stiffness of the piles and the passive resistance of the soil acting upon the embedded portion of the piles. Ground anchors can also be used when additional lateral resistance is required. Using Broms’ methods, a parametric study was completed to investigate the performance of laterally loaded short and long steel piles installed in a variety of cohesive and cohesionless soils. The results were compared to those generated using RocScience finite element software. RocScience software was then used to evaluate the lateral resistance of piles installed at various distances from the crest of a 2:1 slope. Finally, two soldier pile walls, to be installed within a sloping railway embankment, were designed.


2006 ◽  
Vol 43 (5) ◽  
pp. 516-530 ◽  
Author(s):  
António S Cardoso ◽  
Nuno M da Costa Guerra ◽  
Armando N Antão ◽  
Manuel Matos Fernandes

The vertical stability of anchored concrete soldier-pile walls is highly influenced by the complexity of the interaction between the different parts of the structure, i.e., wall, anchors, and supported soil mass. The problem is analyzed using upper bound limit analysis through published solutions and proposed closed-form equations. A comparison is made between these equations and numerical limit analyses. An estimate of the theoretical minimum pile resistance required to avoid excavation collapse is presented. Published finite element elastoplastic results are used for comparison.Key words: anchored retaining wall, concrete soldier-pile walls, vertical equilibrium, finite elements, limit analysis, soil-to-wall interface shear forces.


2015 ◽  
pp. 32
Author(s):  
E. A. Likhacheva ◽  
A. N. Makkaveyev ◽  
G. P. Lokshin ◽  
L. A. Nekrasova

2017 ◽  
Vol 14 (1) ◽  
pp. 53
Author(s):  
Arwan Apriyono ◽  
Sumiyanto Sumiyanto ◽  
Nanang Gunawan Wariyatno

Gunung Tugel is an area that located Patikraja Region, Southern Banyumas. Thetopography of the area is mostly mountainous with a slope that varies from flat to steep. Thiscondition makes to many areas of this region potentially landslide. In 2015, a landslideoccurred in Jalan Gunung Tugel. The Landslide occurred along 70 meters on the half of theroad and causing traffic Patikraja-Purwokerto disturbed. To repair the damage of the road andavoid further landslides, necessary to analyze slope stability. This study is to analyze landslidereinforcement that occurred at Gunung Tugel and divides into 3 step. The first step is fieldinvestigation to determine the condition of the location and dimensions of landslides. Thesecond step is to know the soil parameters and analyzes data were obtained from the field. Andthe final step is analyzed of the landslide reinforcement by using data obtained from thepreceding step. In this research, will be applied three variations of reinforcement i.e. retainingwall, pile foundation and combine both of pile foundations and retaining wall. Slope stabilityanalysis was conducted using limit equilibrium method. Based on the analysis conducted onthe three variations reinforcement, combine both of pile foundations and retaining wall morerecommended. Application of and combine both of pile foundations and retaining wall is themost realistic option in consideration of ease of implementation at the field. From thecalculations have been done, in order to achieve stable conditions need retaining wall withdimensions of 2 meters high with 2,5 meters of width. DPT is supported by two piles of eachcross-section with 0.3 meters of diameter along 10 meters with 1-meter in space. Abstrak: Gunung Tugel adalah salah satu daerah yang terletak di Kecamatan PatikrajaKabupaten Banyumas bagian selatan. Kondisi topografi daerah tersebut sebagian besar berupapegunungan dengan kemiringan yang bervariasi dari landai sampai curam. Hal inimenyebabkan banyak daerah di wilayah Gunung Tugel yang berpotensi terjadi bencana tanahlongsor. Pada tahun 2015, peristiwa longsor kembali terjadi di ruas Jalan Gunung Tugel.Kelongsoran yang terjadi sepanjang 70 meter pada separuh badan jalan tersebut menyebabkanarus lalu lintas patikraja-purwokerto menjadi terganggu. Untuk memperbaiki kerusakan jalandan mencegah kelongsoran kembali, diperlukan analisis perkuatan tanah terhadap lerengtersebut. Studi analisis penanggulangan kelongsoran jalan yang terjadi di Gunung Tugel inidilakukan dengan tiga tahapan. Tahapan pertama adalah investigasi lapangan untukmengetahui kondisi lokasi dan dimensi longsor serta mengambil sampel tanah di lapangan.Tahap kedua adalah melakukan pengujian parameter tanah dan analisis data yang diperolehdari lapangan. Tahapan yang terakhir adalah analisis penanggulangan longsor denganmenggunakan data yang diperoleh dari tahapan sebelumnya. Pada penelitan ini, akanditerapkan tiga variasi perkuatan lereng yaitu dinding penahan tanah (DPT), turap dan DPTyang dikombinasikan dengan pondasi tiang. Analisis stabilitas lereng dilakukan dengan metodekeseimbangan batas. Berdasarkan hasil analisis yang dilakukan terhadap ketiga variasiperkuatan, DPT dengan kombinasi tiang pancang lebih direkomendasikan. Penerapan DPTyang dikombinasikan dengan minipile merupakan pilihan yang paling realistis denganpertimbangan tingkat kemudahan pelaksanaan di lapangan. Dari perhitungan yang telahdilakukan, untuk mencapai kondisi stabil diperlukan DPT dengan dimensi tinggi 2 meterdengan lebar bawah 2,5 meter. DPT tersebut ditopang oleh dua tiang tiap penampangmelintang dengan diameter 0,3 meter sepanjang 10 meter dengan jarak antar tiang 1 meter.kata kunci: tanah longsor, perkuatan tanah, metode keseimbangan batas


2016 ◽  
Vol 12 (4) ◽  
Author(s):  
Ari Sandyavitri

This paper objectives are to; (i) identification of risky slopes (within 4 Provinces in Sumatra including Provinces of Riau, West Sumatra, Jambi and South Sumatra encompassing 840 kms of the “Jalan Lintas Sumatra” highway) based on Rockfall Hazard Rating Systems (RHRS) method; (ii) developing alternatives to stabilize slope hazards, and (iii) selecting appropriate slopes stabilization techniques based on both proactive approach and value engineering one. Based on the Rockfall Hazard Rating Systems (RHRS) method, it was identified 109 steep slopes prone to failure within this highway section. Approximately, 15 slopes were identified as potential high-risk slopes (RHRS scores were calculated >200 points). Based on the proactive approach, seven riskiest slopes ware identified. The preferred stabilization alternatives to remedy most of these slopes are suggested as follow; either (i) a combination of retaining wall and drainage, or (ii) gabion structure and drainage. However, different approaches may yield different results, there are at least 2 main consideration in prioritizing slope stabilization; (i) based on the riskiest slopes, and(ii) the least expensive stabilization alternatives.


Sign in / Sign up

Export Citation Format

Share Document