ANALISIS PENANGGULANGAN KELONGSORAN TANAH PADA RUAS JALAN GUNUNG TUGEL PATIKRAJA BANYUMAS

2017 ◽  
Vol 14 (1) ◽  
pp. 53
Author(s):  
Arwan Apriyono ◽  
Sumiyanto Sumiyanto ◽  
Nanang Gunawan Wariyatno

Gunung Tugel is an area that located Patikraja Region, Southern Banyumas. Thetopography of the area is mostly mountainous with a slope that varies from flat to steep. Thiscondition makes to many areas of this region potentially landslide. In 2015, a landslideoccurred in Jalan Gunung Tugel. The Landslide occurred along 70 meters on the half of theroad and causing traffic Patikraja-Purwokerto disturbed. To repair the damage of the road andavoid further landslides, necessary to analyze slope stability. This study is to analyze landslidereinforcement that occurred at Gunung Tugel and divides into 3 step. The first step is fieldinvestigation to determine the condition of the location and dimensions of landslides. Thesecond step is to know the soil parameters and analyzes data were obtained from the field. Andthe final step is analyzed of the landslide reinforcement by using data obtained from thepreceding step. In this research, will be applied three variations of reinforcement i.e. retainingwall, pile foundation and combine both of pile foundations and retaining wall. Slope stabilityanalysis was conducted using limit equilibrium method. Based on the analysis conducted onthe three variations reinforcement, combine both of pile foundations and retaining wall morerecommended. Application of and combine both of pile foundations and retaining wall is themost realistic option in consideration of ease of implementation at the field. From thecalculations have been done, in order to achieve stable conditions need retaining wall withdimensions of 2 meters high with 2,5 meters of width. DPT is supported by two piles of eachcross-section with 0.3 meters of diameter along 10 meters with 1-meter in space. Abstrak: Gunung Tugel adalah salah satu daerah yang terletak di Kecamatan PatikrajaKabupaten Banyumas bagian selatan. Kondisi topografi daerah tersebut sebagian besar berupapegunungan dengan kemiringan yang bervariasi dari landai sampai curam. Hal inimenyebabkan banyak daerah di wilayah Gunung Tugel yang berpotensi terjadi bencana tanahlongsor. Pada tahun 2015, peristiwa longsor kembali terjadi di ruas Jalan Gunung Tugel.Kelongsoran yang terjadi sepanjang 70 meter pada separuh badan jalan tersebut menyebabkanarus lalu lintas patikraja-purwokerto menjadi terganggu. Untuk memperbaiki kerusakan jalandan mencegah kelongsoran kembali, diperlukan analisis perkuatan tanah terhadap lerengtersebut. Studi analisis penanggulangan kelongsoran jalan yang terjadi di Gunung Tugel inidilakukan dengan tiga tahapan. Tahapan pertama adalah investigasi lapangan untukmengetahui kondisi lokasi dan dimensi longsor serta mengambil sampel tanah di lapangan.Tahap kedua adalah melakukan pengujian parameter tanah dan analisis data yang diperolehdari lapangan. Tahapan yang terakhir adalah analisis penanggulangan longsor denganmenggunakan data yang diperoleh dari tahapan sebelumnya. Pada penelitan ini, akanditerapkan tiga variasi perkuatan lereng yaitu dinding penahan tanah (DPT), turap dan DPTyang dikombinasikan dengan pondasi tiang. Analisis stabilitas lereng dilakukan dengan metodekeseimbangan batas. Berdasarkan hasil analisis yang dilakukan terhadap ketiga variasiperkuatan, DPT dengan kombinasi tiang pancang lebih direkomendasikan. Penerapan DPTyang dikombinasikan dengan minipile merupakan pilihan yang paling realistis denganpertimbangan tingkat kemudahan pelaksanaan di lapangan. Dari perhitungan yang telahdilakukan, untuk mencapai kondisi stabil diperlukan DPT dengan dimensi tinggi 2 meterdengan lebar bawah 2,5 meter. DPT tersebut ditopang oleh dua tiang tiap penampangmelintang dengan diameter 0,3 meter sepanjang 10 meter dengan jarak antar tiang 1 meter.kata kunci: tanah longsor, perkuatan tanah, metode keseimbangan batas

Author(s):  
Sriyati Ramadhani ◽  
Martini ◽  
Mastura Labombang ◽  
Shafira Yuniar

The earthquake that occured on September 28, 2018 in Palu city triggered liquefaction. Balaroa is one of the affected locations by liquefaction. The Balaroa area has several landslides including the road section which causes slopes to form. The purpose of this study is to identify the potential of landslides due to liquefaction on the Balaroa road section based on numerical modeling using the limit equalibrium method. This study was carried out on the Balaroa road section, which is geographically located in West Palu sub district, Palu City, Central of Sulawesi Province. The slope stability analysis models three locations that are prone to landslides using the limit equalibrium method assisted by Slide 7.0 program.The results show that the safety factor value of those three locations on the Balora road section using methods of Ordinary, Bishop and Janbu is FS<1, it indicates that the slope is in unsafe condition and prone to lanslides, therefore it needs to be taken into consideration by government


2013 ◽  
Vol 353-356 ◽  
pp. 89-94
Author(s):  
Dai Wang ◽  
Yong Zhi Wang

Calculation methods for active earth pressure of retaining wall are analyzed and discussed, and then based on energy conservation principle, one formula about calculation of active earth pressure was deduced which was illustrated with two engineering examples. The results suggest: compared with other limit equilibrium method, this method is closer to practical action and relatively simple, and is applicable to any case calculation for active earth pressure of wall retaining, so has high promotion value.


AIP Advances ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 125318
Author(s):  
Li Chen ◽  
Yachao Zhang ◽  
Zhongyong Yang ◽  
Qian Li ◽  
Linfeng Han

Author(s):  
Andrew Lees ◽  
Michael Dobie

Polymer geogrid reinforced soil retaining walls have become commonplace, with routine design generally carried out by limiting equilibrium methods. Finite element analysis (FEA) is becoming more widely used to assess the likely deformation behavior of these structures, although in many cases such analyses over-predict deformation compared with monitored structures. Back-analysis of unit tests and instrumented walls improves the techniques and models used in FEA to represent the soil fill, reinforcement and composite behavior caused by the stabilization effect of the geogrid apertures on the soil particles. This composite behavior is most representatively modeled as enhanced soil shear strength. The back-analysis of two test cases provides valuable insight into the benefits of this approach. In the first case, a unit cell was set up such that one side could yield thereby reaching the active earth pressure state. Using FEA a test without geogrid was modeled to help establish appropriate soil parameters. These parameters were then used to back-analyze a test with geogrid present. Simply using the tensile properties of the geogrid over-predicted the yield pressure but using an enhanced soil shear strength gave a satisfactory comparison with the measured result. In the second case a trial retaining wall was back-analyzed to investigate both deformation and failure, the failure induced by cutting the geogrid after construction using heated wires. The closest fit to the actual deformation and failure behavior was provided by using enhanced fill shear strength.


2016 ◽  
Vol 858 ◽  
pp. 73-80
Author(s):  
Ying Kong ◽  
Hua Peng Shi ◽  
Hong Ming Yu

With the slope unstable rock masses of a stope in Longsi mine, Jiaozuo City, China as the target, we computed and analyzed the stability of unstable rock masses using a limit equilibrium method (LEM) and a discrete element strength reduction method (SRM). Results show that the unstable rock masses are currently stable. Under the external actions of natural weathering, rainfall and earthquake, unstable rock mass 1 was manifested as a shear slip failure mode, and its stability was controlled jointly by bedding-plane and posterior-margin steep inclined joints. In comparison, unstable rock mass 2 was manifested as a tensile-crack toppling failure mode, and its stability was controlled by the perforation of posterior-margin joints. From the results of the 2 methods we find the safety factor determined from SRM is larger, but not significantly, than that from LEM, and SRM can simulate the progressive failure process of unstable rock masses. SRM also provides information about forces and deformation (e.g. stress-strain, and displacement) and more efficiently visualizes the parts at the slope that are susceptible to instability, suggesting SRM can be used as a supplementation of LEM.


2013 ◽  
Vol 671-674 ◽  
pp. 245-250
Author(s):  
Wen Hui Tan ◽  
Ya Liang Li ◽  
Cong Cong Li

At present, in-situ stress was not considered in Limit Equilibrium Method (LEM) of slopes, the influence of in-situ stress is very small on the stability of conventional slopes, but in deep-depressed open-pit mines, the influence should not be neglected. Formula for calculating the Factor of Safety (FOS) under the effect of horizontal in-situ stress was deduced using General Slice Method (GSM) of two-dimensional (2D) limit equilibrium method in this paper,a corresponding program SSLOPE was built, and the software was used in a deep- depressed open-pit iron mine. The results show that the FOS of the slope decreased by 20% when horizontal in-situ stress is considered, some reinforcements must be taken. Therefore, the influence of in-situ stress on slope stability should be taken into account in deep open –pit mines.


2013 ◽  
Vol 275-277 ◽  
pp. 1423-1426
Author(s):  
Lin Kuang ◽  
Ai Zhong Lv ◽  
Yu Zhou

Based on finite element analysis software ANSYS, slope stability analysis is carried out by Elastic limiting equilibrium method proposed in this paper. A series of sliding surface of the slope can be assumed firstly, and then stress field along the sliding surface is analyzed as the slope is in elastic state. The normal and tangential stresses along each sliding surface can be obtained, respectively. Then the safety factor for each slip surface can be calculated, the slip surface which the safety factor is smallest is the most dangerous sliding surface. This method is different from the previous limit equilibrium method. For the previous limit equilibrium method, the normal and tangential stresses along the sliding surface are calculated based on many assumptions. While, the limit equilibrium method proposed in this paper has fewer assumptions and clear physical meaning.


Sign in / Sign up

Export Citation Format

Share Document