A data assimilation experiment of temperature and humidity profiles from an international network of ground-based microwave radiometers

Author(s):  
Domenico Cimini ◽  
Olivier Caumont ◽  
Ulrich Lohnert ◽  
Lucas Alados-Arboledast ◽  
Thierry Huet ◽  
...  
2021 ◽  
Vol 13 (15) ◽  
pp. 2968
Author(s):  
Lianfa Lei ◽  
Zhenhui Wang ◽  
Yingying Ma ◽  
Lei Zhu ◽  
Jiang Qin ◽  
...  

Ground-based multichannel microwave radiometers (GMRs) can observe the atmospheric microwave radiation brightness temperature at K-bands and V-bands and provide atmospheric temperature and humidity profiles with a relatively high temporal resolution. Currently, microwave radiometers are operated in many countries to observe the atmospheric temperature and humidity profiles. However, a theoretical analysis showed that a radiometer can be used to observe solar radiation. In this work, we improved the control algorithm and software of the antenna servo control system of the GMR so that it could track and observe the sun and we use this upgraded GMR to observe solar microwave radiation. During the observation, the GMR accurately tracked the sun and responded to the variation in solar radiation. Furthermore, we studied the feasibility for application of the GMR to measure the absolute brightness temperature (TB) of the sun. The results from the solar observation data at 22.235, 26.235, and 30.000 GHz showed that the GMR could accurately measure the TB of the sun. The derived solar TB measurements were 9950 ± 334, 10,351 ± 370, and 9217 ± 375 K at three frequencies. In a comparison with previous studies, we obtained average percentage deviations of 9.1%, 5.3%, and 4.5% at 22.235, 26.235, and 30.0 GHz, respectively. The results demonstrated that the TB of the sun retrieved from the GMR agreed well with the previous results in the literature. In addition, we also found that the GMR responded to the variation in sunspots and a positive relationship existed between the solar TB and the sunspot number. According to these results, it was demonstrated that the solar observation technique can broaden the field usage of GMR.


2021 ◽  
Author(s):  
Bas Crezee ◽  
Claire Merker ◽  
Jasmin Vural ◽  
Daniel Leuenberger ◽  
Alexander Haefele ◽  
...  

<p>The current atmospheric observing systems fail to provide observations of temperature and humidity in the planetary boundary layer (PBL) with satisfactory spatial and temporal resolutions despite their potential positive impact on numerical weather prediction (NWP). This is particularly critical for humidity, which exhibits a very high variability in space and time, and for the vertical profile of temperature, which determines the atmospheric stability. Therefore, the analyzed thermodynamic structure of the PBL can be prone to errors, leading to poor forecasts of warnings for relevant phenomena, such as severe storms due to intense summer convection or winter fog and low stratus.</p><p>One approach to improve the model’s representation of the PBL is to include novel, ground-based remote sensing profiler observations in the data assimilation system to improve the forecast initial conditions. This also improves the quality of downstream applications relying on a good representation of the PBL in the model, such as dispersion modelling for emergency response after nuclear, chemical or biological incidents.</p><p>In this contribution, we present results of the MeteoSwiss effort to include observations from Raman lidar and microwave radiometers into the 1km mesh-size ensemble data assimilation system KENDA-1. To this end, we have developed a forward operator for water vapor mixing ratio and temperature to assimilate profiles from the Raman lidar. Brightness temperatures from the microwave radiometers are assimilated using the RTTOV-gb forward operator. We produced extensive O-B statistics to validate the observations with respect to the model and to derive the error covariance matrices of the observations. Furthermore, we will present results of several data assimilation cycling experiments during summer-time convective situations.</p>


2006 ◽  
Vol 134 (12) ◽  
pp. 3657-3667 ◽  
Author(s):  
T. Koyama ◽  
T. Vukicevic ◽  
M. Sengupta ◽  
T. Vonder Haar ◽  
A. S. Jones

Abstract Information content analysis of the Geostationary Operational Environmental Satellite (GOES) sounder observations in the infrared was conducted for use in satellite data assimilation. Information content is defined as a first-order response of the top-of-atmosphere brightness temperature to perturbations of simulated temperature and humidity profiles, obtained from a cloud-resolving model, both in the presence and absence of clouds. Sensitivity to the perturbations was numerically evaluated using an observational operator for visible and infrared radiative transfer developed within a research satellite data assimilation system. The vertical distribution of the sensitivities was analyzed as a function of cloud optical thickness covering the range from a cloud-free scene to an optically thick cloud. The clear-sky sensitivities to temperature and humidity perturbations for each channel are representative of the corresponding channel weighting functions for a clear-sky case. For optically thin–moderate ice clouds, the vertical distributions of the sensitivities resemble clear-sky results, indicating that the use of infrared sounding observations in data assimilation can potentially improve temperature and humidity profiles below those clouds. This result is significant, as GOES infrared sounder data have until now only been used in cloud-cleared scenes. It is expected that the use of sounder data in data assimilation, even in the presence of optically thin to moderate high clouds, will help reduce errors in temperature and water vapor mixing ratio profiles below the clouds.


Oceanography ◽  
2009 ◽  
Vol 22 (3) ◽  
pp. 14-21 ◽  
Author(s):  
Michael Bell ◽  
Michel Lefèbvre ◽  
Pierre-Yves Le Traon ◽  
Neville Smith ◽  
Kirsten Wilmer-Becker

Sign in / Sign up

Export Citation Format

Share Document