Surveying Solid-State Transformer Structures and Controls: Providing Highly Efficient and Controllable Power Flow in Distribution Grids

2020 ◽  
Vol 14 (1) ◽  
pp. 56-70 ◽  
Author(s):  
Felipe Ruiz ◽  
Marcelo A. Perez ◽  
Jose R. Espinosa ◽  
Tomasz Gajowik ◽  
Sebastian Stynski ◽  
...  
Author(s):  
Bharat Bhushan Khare ◽  
Rajeev Shankar Pathak ◽  
Sanjeev Sharma ◽  
Vinod Kumar Singh

According to future renewable electric energy distribution and management (FREEDM) system, solid state transformers play an important role in smart grid technologies. They have several advantages over conventional transformers such as bi-directional power flow, light in weight, compact size, etc. They also compensate the environmental issues which are created due to transformer oil. Because of various advantages over traditional transformer, SST is preferred widely at the present time. So in this chapter, the various architectures, needs, and applications of solid state transformers are discussed. The global market of SST has continuously improved because it has several applications and benefits.


2019 ◽  
Vol 9 (17) ◽  
pp. 3545 ◽  
Author(s):  
Umair Tahir ◽  
Ghulam Abbas ◽  
Dan Glavan ◽  
Valentina Balas ◽  
Umar Farooq ◽  
...  

This paper presents a symmetrical topology for the design of solid-state transformer; made up of power switching converters; to replace conventional bulky transformers. The proposed circuitry not only reduces the overall size but also provides power flow control with the ability to be interfaced with renewable energy resources (RESs) to fulfill the future grid requirements at consumer end. The proposed solid-state transformer provides bidirectional power flow with variable voltage and frequency operation and has the ability to maintain unity power factor; and total harmonic distortion (THD) of current for any type of load within defined limits of Institute of Electrical and Electronics Engineers (IEEE) standard. Solid state transformer offers much smaller size compared to the conventional iron core transformer. MATLAB/Simulink platform is adopted to test the validity of the proposed circuit for different scenarios by providing the simulation results evaluated at 25 kHz switching frequency.


Author(s):  
Yu Jianyang ◽  
Muhammad Qasim Khan ◽  
Zhang Yanwen ◽  
Muhammad Mansoor Khan ◽  
Muhammad Ali

Author(s):  
Dillip K. Mishra ◽  
Mojtaba J. Ghadi ◽  
Li Li ◽  
Md. Jahangir Hossain ◽  
Jiangfeng Zhang ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4607
Author(s):  
Sebastian Stynski ◽  
Marta Grzegorczyk ◽  
Cezary Sobol ◽  
Radek Kot

Nowadays, the increasing number of nonlinear loads and renewable energy resources pose new challenges for the standard electrical grid. Conventional solutions cannot handle most of them. The weakest component in the whole system is a conventional distribution (converting medium to low AC voltage) transformer. It should not operate with unbalanced, heavily distorted voltage and cannot control power flow or compensate current harmonics. One of the promising solutions to replace the conventional transformer and thus minimize power flow and grid distortions is a power electronics device called a solid state transformer (SST). Depending on the SST topology, it can have different functionalities, and, with the proper control algorithm, it is able to compensate any power imbalances in both low voltage (LV) and medium voltage (MV) grid sides. In the case of a three energy conversion stage SST, the LV and the MV stages can be treated separately. This paper focuses on the MV-AC to the MV-DC stage only based on a star-connected cascaded H-bridge converter. In this paper, a simple control solution for such a converter enabling different current control strategies to distribute power among the phases in an MV grid in the case of voltage imbalances is proposed. Simulation and experimental results proved good performance and verified the validity of the proposed control algorithm.


Author(s):  
Rahul Jaiswal ◽  
Anshul Agarwal ◽  
Vineeta Agarwal ◽  
Badre Bossoufi

Background: This paper presents a decoupled control technique for balancing the power and voltage through grid side converter using a solid state transformer. Methods: Decoupling control is essentially a voltage oriented control technique with the objective of eliminating cross-coupling elements. Use of this decouple technique, allows bi-directional power flow control for both active and reactive power, thereby maintaining steady state DC interference voltage. Results: The performance of this scheme is analyzed & the results are obtained from the Matlab/Simulink model. Conclusion: From the above analysis, it can be concluded that the decoupled control strategy can easily eliminate the cross- coupled element of a solid state transformer for the grid side converter.


Sign in / Sign up

Export Citation Format

Share Document