Joint echo canceller/equalizer and timing recovery for high speed full duplex baseband transmission systems

Author(s):  
J. Lee ◽  
S.H. Ardalan
Author(s):  
N. Stojanovic ◽  
Fotini Karinou ◽  
Cristian Prodaniuc ◽  
Zhang Qiang

2019 ◽  
Vol 137 ◽  
pp. 386-403 ◽  
Author(s):  
Zhiwei Wang ◽  
Guiming Mei ◽  
Qing Xiong ◽  
Zhonghui Yin ◽  
Weihua Zhang

2018 ◽  
Vol 44 (1) ◽  
pp. 1-16 ◽  
Author(s):  
S. A. Blokhin ◽  
N. A. Maleev ◽  
M. A. Bobrov ◽  
A. G. Kuzmenkov ◽  
A. V. Sakharov ◽  
...  

Author(s):  
N. Alivelu Manga

The present-day communication system uses Frequency Division Duplex (FDD) to emulate the benefits of Full Duplex Communication. But it requires more bandwidth as the cost of the spectrum is very high it becomes a major limitation. To overcome this problem implementation of Full Duplex Communication is the best solution. Implementation of full duplex communication is difficult because of a significant problem called self-interference. while transmitting and receiving signals on the same frequency band, receiving signal is interfered with the transmitted signal this phenomenon is called self-interference. The objective of this project is to minimize that self-interference signal from the received signal by using signal processing technique, LMS echo cancellation. Least Mean Square (LMS) echo canceller whose coefficients are updated iteratively is used to cancel the self-interference. An algorithm based on steepest descent method is used to obtain coefficients that change iteratively with varying step size to solve Weiner-Hopfs equation.


Lubricants ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 20 ◽  
Author(s):  
Gajarajan Sivayogan ◽  
Ramin Rahmani ◽  
Homer Rahnejat

Energy efficiency and functional reliability are the two key requirements in the design of high-performance transmissions. Therefore, a representative analysis replicating real operating conditions is essential. This paper presents the thermoelastohydrodynamic lubrication (TEHL) of meshing spur gear teeth of high-performance racing transmission systems, where high generated contact pressures and lubricant shear lead to non-Newtonian traction. The determination of the input contact geometry of meshing pairs as well as contact kinematics are essential steps for representative TEHL. These are incorporated in the current analysis through the use of Lubricated Loaded Tooth Contact Analysis (LLTCA), which is far more realistic than the traditional Tooth Contact Analysis (TCA). In addition, the effects of lubricant and flash surface temperature rise of contacting pairs, leading to the thermal thinning of lubricant, are taken into account using a thermal network model. Furthermore, high-speed contact kinematics lead to shear thinning of the lubricant and reduce the film thickness under non-Newtonian traction. This comprehensive approach based on established TEHL analysis, particularly including the effect of LLTCA on the TEHL of spur gears, has not hitherto been reported in literature.


Sign in / Sign up

Export Citation Format

Share Document