scholarly journals Style transfer-based image synthesis as an efficient regularization technique in deep learning

Author(s):  
Agnieszka Mikolajczyk ◽  
Michal Grochowski
2021 ◽  
pp. 1-12
Author(s):  
Mukul Kumar ◽  
Nipun Katyal ◽  
Nersisson Ruban ◽  
Elena Lyakso ◽  
A. Mary Mekala ◽  
...  

Over the years the need for differentiating various emotions from oral communication plays an important role in emotion based studies. There have been different algorithms to classify the kinds of emotion. Although there is no measure of fidelity of the emotion under consideration, which is primarily due to the reason that most of the readily available datasets that are annotated are produced by actors and not generated in real-world scenarios. Therefore, the predicted emotion lacks an important aspect called authenticity, which is whether an emotion is actual or stimulated. In this research work, we have developed a transfer learning and style transfer based hybrid convolutional neural network algorithm to classify the emotion as well as the fidelity of the emotion. The model is trained on features extracted from a dataset that contains stimulated as well as actual utterances. We have compared the developed algorithm with conventional machine learning and deep learning techniques by few metrics like accuracy, Precision, Recall and F1 score. The developed model performs much better than the conventional machine learning and deep learning models. The research aims to dive deeper into human emotion and make a model that understands it like humans do with precision, recall, F1 score values of 0.994, 0.996, 0.995 for speech authenticity and 0.992, 0.989, 0.99 for speech emotion classification respectively.


Author(s):  
Yin Xu ◽  
Yan Li ◽  
Byeong-Seok Shin

Abstract With recent advances in deep learning research, generative models have achieved great achievements and play an increasingly important role in current industrial applications. At the same time, technologies derived from generative methods are also under a wide discussion with researches, such as style transfer, image synthesis and so on. In this work, we treat generative methods as a possible solution to medical image augmentation. We proposed a context-aware generative framework, which can successfully change the gray scale of CT scans but almost without any semantic loss. By producing target images that with specific style / distribution, we greatly increased the robustness of segmentation model after adding generations into training set. Besides, we improved 2– 4% pixel segmentation accuracy over original U-NET in terms of spine segmentation. Lastly, we compared generations produced by networks when using different feature extractors (Vgg, ResNet and DenseNet) and made a detailed analysis on their performances over style transfer.


2021 ◽  
Author(s):  
Ryusei Ishii ◽  
Patrice Carbonneau ◽  
Hitoshi Miyamoto

<p>Archival imagery dating back to the mid-twentieth century holds information that pre-dates urban expansion and the worst impacts of climate change.  In this research, we examine deep learning colorisation methods applied to historical aerial images in Japan.  Specifically, we attempt to colorize monochrome images of river basins by applying the method of Neural Style Transfer (NST).    First, we created RGB orthomosaics (1m) for reaches of 3 Japanese rivers, the Kurobe, Ishikari, and Kinu rivers.  From the orthomosaics, we extract 60 thousand image tiles of `100 x100` pixels in order to train the CNN used in NST.  The Image tiles were classified into 6 classes: urban, river, forest, tree, grass, and paddy field.  Second, we use the VGG16 model pre-trained on ImageNet data in a transfer learning approach where we freeze a variable number of layers.  We fine-tuned the training epochs, learning rate, and frozen layers in VGG16 in order to derive the optimal CNN used in NST.  The fine tuning resulted in the F-measure accuracy of 0.961, 0.947, and 0.917 for the freeze layer in 7,11,15, respectively.  Third, we colorize monochrome aerial images by the NST with the retrained model weights.  Here used RGB images for 7 Japanese rivers and the corresponding grayscale versions to evaluate the present NST colorization performance.  The RMSE between the RGB and resultant colorized images showed the best performance with the model parameters of lower content layer (6), shallower freeze layer (7), and larger style/content weighting ratio (1.0 x10⁵).  The NST hyperparameter analysis indicated that the colorized images became rougher when the content layer selected deeper in the VGG model.  This is because the deeper the layer, the more features were extracted from the original image.  It was also confirmed that the Kurobe and Ishikari rivers indicated higher accuracy in colorisation.  It might come from the fact that the training dataset of the fine tuning was extracted from these river images.  Finally, we colorized historical monochrome images of Kurobe river with the best NST parameters, resulting in quality high enough compared with the RGB images.  The result indicated that the fine tuning of the NST model could achieve high performance to proceed further land cover classification in future research work.</p>


Cell Systems ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 453-458.e6 ◽  
Author(s):  
Reka Hollandi ◽  
Abel Szkalisity ◽  
Timea Toth ◽  
Ervin Tasnadi ◽  
Csaba Molnar ◽  
...  

2021 ◽  
Vol 11 (9) ◽  
pp. 842
Author(s):  
Shruti Atul Mali ◽  
Abdalla Ibrahim ◽  
Henry C. Woodruff ◽  
Vincent Andrearczyk ◽  
Henning Müller ◽  
...  

Radiomics converts medical images into mineable data via a high-throughput extraction of quantitative features used for clinical decision support. However, these radiomic features are susceptible to variation across scanners, acquisition protocols, and reconstruction settings. Various investigations have assessed the reproducibility and validation of radiomic features across these discrepancies. In this narrative review, we combine systematic keyword searches with prior domain knowledge to discuss various harmonization solutions to make the radiomic features more reproducible across various scanners and protocol settings. Different harmonization solutions are discussed and divided into two main categories: image domain and feature domain. The image domain category comprises methods such as the standardization of image acquisition, post-processing of raw sensor-level image data, data augmentation techniques, and style transfer. The feature domain category consists of methods such as the identification of reproducible features and normalization techniques such as statistical normalization, intensity harmonization, ComBat and its derivatives, and normalization using deep learning. We also reflect upon the importance of deep learning solutions for addressing variability across multi-centric radiomic studies especially using generative adversarial networks (GANs), neural style transfer (NST) techniques, or a combination of both. We cover a broader range of methods especially GANs and NST methods in more detail than previous reviews.


2021 ◽  
Vol 267 ◽  
pp. 01034
Author(s):  
Li Mingyang ◽  
Li Chengrong

Household waste is threatening the urban environment increasingly day by day for people’s material needs increasing with the acceleration of urbanization. In this paper, a new waste sorting model is proposed to solve the problems of waste sorting. The style transfer was used to increase the data set to make some objects be sorted well. Then the rotational attention mechanism model was used to increase the accuracy of waste sorting of the blocked objects. The representation vector extraction module in the target tracking algorithm Deep Sort was replaced with Siamese network to make the network more lightweight. As a result, this paper effectively solves the current waste sorting tasks.


Information ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 125 ◽  
Author(s):  
Alexander Buslaev ◽  
Vladimir I. Iglovikov ◽  
Eugene Khvedchenya ◽  
Alex Parinov ◽  
Mikhail Druzhinin ◽  
...  

Data augmentation is a commonly used technique for increasing both the size and the diversity of labeled training sets by leveraging input transformations that preserve corresponding output labels. In computer vision, image augmentations have become a common implicit regularization technique to combat overfitting in deep learning models and are ubiquitously used to improve performance. While most deep learning frameworks implement basic image transformations, the list is typically limited to some variations of flipping, rotating, scaling, and cropping. Moreover, image processing speed varies in existing image augmentation libraries. We present Albumentations, a fast and flexible open source library for image augmentation with many various image transform operations available that is also an easy-to-use wrapper around other augmentation libraries. We discuss the design principles that drove the implementation of Albumentations and give an overview of the key features and distinct capabilities. Finally, we provide examples of image augmentations for different computer vision tasks and demonstrate that Albumentations is faster than other commonly used image augmentation tools on most image transform operations.


Sign in / Sign up

Export Citation Format

Share Document