Stability and transient response enhancement techniques for low-dropout regulators

Author(s):  
Hoi Lee ◽  
Mohammad Al-Shyoukh
2017 ◽  
Vol 26 (12) ◽  
pp. 1750197 ◽  
Author(s):  
Fatemeh Abdi ◽  
Mahnaz Janipoor Deylamani ◽  
Parviz Amiri

In this paper, we use bias current boosting and slew rate enhancement in multiple-output Low-dropout structure to achieve a faster transient response. This method reduces ripples of output voltage during sudden changes in load current and input voltage. The proposed MOLDO circuit was simulated with a 0.18[Formula: see text][Formula: see text]m CMOS process in buck mode with four-output legs. Integrating of proposed circuit is easier because there is the symmetry in the circuit designing. The results of our work show that when input voltage changes between 2.5–3.3[Formula: see text]V, the output voltage after 25[Formula: see text][Formula: see text]s with load current of 100[Formula: see text]mA, is determined with ripple less than 1.8[Formula: see text]mV. In sudden changes, the load current at the range 0–100[Formula: see text]mA, and output voltages after a maximum 15.5[Formula: see text][Formula: see text]s with an input voltage of 3.3[Formula: see text]V have the highest ripple in output voltage of 4[Formula: see text]mV.


Author(s):  
M. Mellincovsky ◽  
M. Sitbon ◽  
M. M. Peretz ◽  
S. Schacham ◽  
A. Kuperman

2019 ◽  
Vol 28 (09) ◽  
pp. 1992001
Author(s):  
Fatemeh Abdi ◽  
Mahnaz Janipoor Deylamani ◽  
Parviz Amiri ◽  
Mohammad Hossein Refan

2014 ◽  
Vol 543-547 ◽  
pp. 800-805 ◽  
Author(s):  
Shang Sheng Chi ◽  
Wei Hu ◽  
Ming Hui Fan ◽  
Yu Sen Xu ◽  
Guo Lin Chen

This paper presents a capacitor-less CMOS low dropout regulator (LDO) with a push-pull class AB amplifier, and a fast transient controller to achieve a better transient response. The undershoot/overshoot voltage and the settling time are effectively reduced. Through the theoretical analysis of the circuit, cadence simulation with SMIC 0.18μm process and under the condition of the input voltage range 1.4~4 V shows the output voltage is 1.2 V, with the fast controller the total quiescent current is 8.2 μA, the undershoot /overshoot voltage is 97 mV/47 mV and the settling time is 0.3 μs as load current suddenly changes from 1 to 100 mA, or vice versa. Compared with this paper without fast transient controller, the undershoot voltage, the overshoot voltage and the settling time are enhanced by 30%, 64% and 80%, respectively.


Sign in / Sign up

Export Citation Format

Share Document