low dropout regulators
Recently Published Documents


TOTAL DOCUMENTS

54
(FIVE YEARS 15)

H-INDEX

10
(FIVE YEARS 1)

Electronics ◽  
2021 ◽  
Vol 10 (18) ◽  
pp. 2279
Author(s):  
Qiwei Chen ◽  
Sanja Kastratovic ◽  
Mohamad Eid ◽  
Sohmyung Ha

Cardiovascular diseases (CVDs) have been listed among the most deadly diseases worldwide. Many CVDs are likely to manifest their symptoms some time prior to the onset of any adverse or catastrophic events, and early detection of cardiac abnormalities is incredibly important. However, traditional electrocardiography (ECG) monitoring systems face challenges with respect to their scalability and affordability as they require direct body contact and cumbersome equipment. As a step forward from the large-scale direct-contact ECG monitoring devices, which are inconvenient for the user in terms of wearability and portability, in this research, we present a small-sized, non-contact, real-time recording system for mobile long-term monitoring of ECG signals. The device mainly comprises three non-contact electrodes to sense the bio-potential signal, an AD8233 AFE IC to extract the ECG signal, and a CC2650 MCU to read, filter, and transmit them. The device is powered by a 2000 mAh lithium-ion battery with isolation between digital and analog powers on the board using two low-dropout regulators (LDOs). The board’s dimension is 8.56 cm × 5.4 cm, the size of a credit card, making it optimal to be worn in a shirt chest pocket. In spite of its small form factor, the device still manages to achieve a continuous measurement battery life of over 16 h, total harmonic distortion below −30 dB across the interested frequency range, an input-referred noise as low as 1.46 µV for contacted cases and 5.15 µV for non-contact cases through cotton, and clear ECG recording for both contact and non-contact sensing, all at a cost around USD 50.


Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1697
Author(s):  
Nihal Kularatna ◽  
Kasun Subasinghage ◽  
Kosala Gunawardane ◽  
Dilini Jayananda ◽  
Thilanga Ariyarathna

All electrical and electronic devices require access to a suitable energy source. In a portable electronic product, such as a cell phone, an energy storage unit drives a complex array of power conversion stages to generate multiple DC voltage rails required. To optimize the overall end-to-end efficiency, these internal power conversions should waste minimal energy and deliver more to the electronic modules. Capacitors are one of the main component families used in electronics, to store and deliver electric charges. Supercapacitors, so called because they provide over a million-fold increase in capacitance relative to a traditional capacitor of the same volume, are enabling a paradigm shift in the design of power electronic converter circuits. Here we show that supercapacitors could function as a lossless voltage-dropping element in the power conversion stages, thereby significantly increasing the power conversion stage efficiency. This approach has numerous secondary benefits: it improves continuity of the supply, suppresses voltage surges, allows the voltage regulation to be electromagnetically silent, and simplifies the design of voltage regulators. The use of supercapacitors allows the development of a novel loss-circumvention theory with applicability to a wide range of supercapacitor-assisted (SCA) techniques. These include low-dropout regulators, transient surge absorbers, LED lighting for DC microgrids, and rapid energy transfer for water heating.


Author(s):  
Ragh Kuttappa ◽  
Longfei Wang ◽  
Selcuk Kose ◽  
Baris Taskin

2020 ◽  
Vol 41 (11) ◽  
pp. 111405
Author(s):  
Mo Huang ◽  
Yan Lu ◽  
Rui P. Martins

Micromachines ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 897
Author(s):  
Chaoping Zhang ◽  
Robert Gallichan ◽  
David Budgett ◽  
Daniel McCormick

This paper presents a capacitive pressure sensor interface circuit design in 180 nm XH018 CMOS technology for an implantable capacitive pressure sensor, which has a wireless power supply and wireless data transfer function. It integrates full-bridge rectifiers, shorting control switches, low-dropout regulators, bandgap references, analog front end, single slope analog to digital converter (ADC), I2C, and an RC oscillator. The low-dropout regulators regulate the wireless power supply coming from the rectifier and provide a stable and accurate 1.8 V DC voltage to other blocks. The capacitance of the pressure sensor is sampled to a discrete voltage by the analog front end. The single slope ADC converts the discrete voltage into 11 bits of digital data, which is then converted into 1 kbps serial data out by the I2C block. The “1” of serial data is modulated to a 500 kHz digital signal that is used to control the shorting switch for wireless data transfer via inductive back scatter. This capacitive pressure sensor interface IC has a resolution of 0.98 mmHg (1.4 fF), average total power consumption of 7.8 mW, and ±3.2% accuracy at the worst case under a −20 to 80 °C temperature range, which improves to ±0.86% when operated between 20 and 60 °C.


Sign in / Sign up

Export Citation Format

Share Document