quiescent current
Recently Published Documents


TOTAL DOCUMENTS

212
(FIVE YEARS 50)

H-INDEX

20
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Mengjie Song ◽  
Chenchang Zhan ◽  
Lidan Wang ◽  
Litao Wu ◽  
Bangdong Sun

2021 ◽  
Author(s):  
Masoud Kargaran ◽  
Mehdi Habibi ◽  
Sebastian Magierowski

The uploaded document is a manuscript accepted in IEEE Transactions on Instrumentation and Measurement.


2021 ◽  
Author(s):  
Masoud Kargaran ◽  
Mehdi Habibi ◽  
Sebastian Magierowski

The uploaded document is a manuscript accepted in IEEE Transactions on Instrumentation and Measurement.


2021 ◽  
Vol 11 (4) ◽  
pp. 37
Author(s):  
Andrea Ballo ◽  
Salvatore Pennisi ◽  
Giuseppe Scotti

A two-stage CMOS transconductance amplifier based on the inverter topology, suitable for very low supply voltages and exhibiting rail-to-rail output capability is presented. The solution consists of the cascade of a noninverting and an inverting stage, both characterized by having only two complementary transistors between the supply rails. The amplifier provides class-AB operation with quiescent current control obtained through an auxiliary loop that utilizes the MOSFETs body terminals. Simulation results, referring to a commercial 28 nm bulk technology, show that the quiescent current of the amplifier can be controlled quite effectively, even adopting a supply voltage as low as 0.5 V. The designed solution consumes around 500 nA of quiescent current in typical conditions and provides a DC gain of around 51 dB, with a unity gain frequency of 1 MHz and phase margin of 70 degrees, for a parallel load of 1 pF and 1.5 MΩ. Settling time at 1% is 6.6 μs, and white noise is 125 nV/Hz.


2021 ◽  
Vol 11 (3) ◽  
pp. 31
Author(s):  
Anindita Paul ◽  
Mario Renteria-Pinon ◽  
Jaime Ramirez-Angulo ◽  
Ricardo Bolaños-Pérez ◽  
Héctor Vázquez-Leal ◽  
...  

An approach to implement single-ended power-efficient static class-AB Miller op-amps with symmetrical and significantly enhanced slew-rate and accurately controlled output quiescent current is introduced. The proposed op-amp can drive a wide range of resistive and capacitive loads. The output positive and negative currents can be much higher than the total op-amp quiescent current. The enhanced performance is achieved by utilizing a simple low-power auxiliary amplifier with resistive local common-mode feedback that increases the quiescent power dissipation by less than 10%. The proposed class AB op-amp is characterized by significantly enhanced large-signal dynamic, static current efficiency, and small-signal figures of merits. The dynamic current efficiency is 15.6 higher, the static current efficiency is 8.9 times higher, and the small-signal figure of merit is 2.3 times higher than the conventional class-A op-amp. A global figure of merit that determines an op-amp’s ultimate speed is 6.33 times higher than the conventional class A op-amp.


Sign in / Sign up

Export Citation Format

Share Document