Experimental terahertz Z-scan imaging of three-dimensional paraffin embedded breast cancer tissue

Author(s):  
Tyler C. Bowman ◽  
Magda El-Shenawee ◽  
Lucas K. Campbell
Lab on a Chip ◽  
2015 ◽  
Vol 15 (3) ◽  
pp. 735-744 ◽  
Author(s):  
Yamin Yang ◽  
Xiaochuan Yang ◽  
Jin Zou ◽  
Chao Jia ◽  
Yue Hu ◽  
...  

A microfluidic-based in vitro three-dimensional (3D) breast cancer tissue model was established for determining the efficiency of photodynamic therapy (PDT) with therapeutic agents (photosensitizer and gold nanoparticles) under various irradiation conditions.


Biomaterials ◽  
2012 ◽  
Vol 33 (3) ◽  
pp. 907-915 ◽  
Author(s):  
Alexander D. Leeper ◽  
Joanne Farrell ◽  
Linda J. Williams ◽  
Jeremy S. Thomas ◽  
J. Michael Dixon ◽  
...  

Cancers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2658
Author(s):  
Monica Marro ◽  
Anna Maria Rodríguez-Rivero ◽  
Cuauhtémoc Araujo-Andrade ◽  
Maria Teresa Fernández-Figueras ◽  
Laia Pérez-Roca ◽  
...  

Microcalcifications are detected through mammography screening and, depending on their morphology and distribution (BI-RADS classification), they can be considered one of the first indicators of suspicious cancer lesions. However, the formation of hydroxyapatite (HAp) calcifications and their relationship with malignancy remains unknown. In this work, we report the most detailed three-dimensional biochemical analysis of breast cancer microcalcifications to date, combining 3D Raman spectroscopy imaging and advanced multivariate analysis in order to investigate in depth the molecular composition of HAp calcifications found in 26 breast cancer tissue biopsies. We demonstrate that DNA has been naturally adsorbed and encapsulated inside HAp microcalcifications. Furthermore, we also show the encapsulation of other relevant biomolecules in HAp calcifications, such as lipids, proteins, cytochrome C and polysaccharides. The demonstration of natural DNA biomineralization, particularly in the tumor microenvironment, represents an unprecedented advance in the field, as it can pave the way to understanding the role of HAp in malignant tissues.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Siti Norbaini Sabtu ◽  
S. F. Abdul Sani ◽  
L. M. Looi ◽  
S. F. Chiew ◽  
Dharini Pathmanathan ◽  
...  

AbstractThe epithelial-mesenchymal transition (EMT) is a crucial process in cancer progression and metastasis. Study of metabolic changes during the EMT process is important in seeking to understand the biochemical changes associated with cancer progression, not least in scoping for therapeutic strategies aimed at targeting EMT. Due to the potential for high sensitivity and specificity, Raman spectroscopy was used here to study the metabolic changes associated with EMT in human breast cancer tissue. For Raman spectroscopy measurements, tissue from 23 patients were collected, comprising non-lesional, EMT and non-EMT formalin-fixed and paraffin embedded breast cancer samples. Analysis was made in the fingerprint Raman spectra region (600–1800 cm−1) best associated with cancer progression biochemical changes in lipid, protein and nucleic acids. The ANOVA test followed by the Tukey’s multiple comparisons test were conducted to see if there existed differences between non-lesional, EMT and non-EMT breast tissue for Raman spectroscopy measurements. Results revealed that significant differences were evident in terms of intensity between the non-lesional and EMT samples, as well as the EMT and non-EMT samples. Multivariate analysis involving independent component analysis, Principal component analysis and non-negative least square were used to analyse the Raman spectra data. The results show significant differences between EMT and non-EMT cancers in lipid, protein, and nucleic acids. This study demonstrated the capability of Raman spectroscopy supported by multivariate analysis in analysing metabolic changes in EMT breast cancer tissue.


2016 ◽  
Vol 61 ◽  
pp. S183
Author(s):  
E. Shestakova ◽  
E. Dudko ◽  
A. Grishanina ◽  
V. Kirsanov ◽  
N. Vichljantzeva ◽  
...  

Breast Cancer ◽  
1998 ◽  
Vol 5 (1) ◽  
pp. 47-52 ◽  
Author(s):  
Shunzo Kobayashi ◽  
Hirotaka Iwase ◽  
Yoshihiko Kawarada ◽  
Naoyuki Miura ◽  
Toshihiro Sugiyama ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document