DNA-templated Free-standing Nanowires with Controllable Dimensions for In-situ TEM Analysis

Author(s):  
S. Mani ◽  
J. Han ◽  
T. Saif ◽  
G. Richter ◽  
E. Arzt
Author(s):  
Charles W. Allen

Irradiation effects studies employing TEMs as analytical tools have been conducted for almost as many years as materials people have done TEM, motivated largely by materials needs for nuclear reactor development. Such studies have focussed on the behavior both of nuclear fuels and of materials for other reactor components which are subjected to radiation-induced degradation. Especially in the 1950s and 60s, post-irradiation TEM analysis may have been coupled to in situ (in reactor or in pile) experiments (e.g., irradiation-induced creep experiments of austenitic stainless steels). Although necessary from a technological point of view, such experiments are difficult to instrument (measure strain dynamically, e.g.) and control (temperature, e.g.) and require months or even years to perform in a nuclear reactor or in a spallation neutron source. Consequently, methods were sought for simulation of neutroninduced radiation damage of materials, the simulations employing other forms of radiation; in the case of metals and alloys, high energy electrons and high energy ions.


Nano Letters ◽  
2016 ◽  
Vol 16 (11) ◽  
pp. 7013-7018 ◽  
Author(s):  
Quentin Jeangros ◽  
Martial Duchamp ◽  
Jérémie Werner ◽  
Maximilian Kruth ◽  
Rafal E. Dunin-Borkowski ◽  
...  

2010 ◽  
Vol 1262 ◽  
Author(s):  
Khalid Hattar ◽  
Blythe G. Clark ◽  
James A Knapp ◽  
David M Follstaedt ◽  
I. M. Robertson

AbstractGrowing interest in nanomaterials has raised many questions regarding the operating mechanisms active during the deformation and failure of nanoscale materials. To address this, a simple, effective in situ TEM straining technique was developed that provides direct detailed observations of the active deformation mechanisms at a length scale relevant to most nanomaterials. The capabilities of this new straining structure are highlighted with initial results in pulsed laser deposited (PLD) Al-Al2O3 thin films of uniform thickness. The Al-Al2O3 system was chosen for investigation, as the grain size can be tailored via deposition and annealing conditions and the active mechanisms in the binary system can be compared to previous studies in PLD Ni and evaporated Al films. PLD Al-Al2O3 free-standing films of various oxide concentrations and different thermal histories were produced and characterized in terms of average grain and particle sizes. Preliminary in situ TEM straining experiments show intergranular failure for films with 5 vol% Al2O3. Further work is in progress to explore and understand the active deformation and failure mechanisms, as well as the dependence of mechanisms on processing routes.


1997 ◽  
Vol 3 (S2) ◽  
pp. 583-584
Author(s):  
J. C. Yang ◽  
M. Yeadon ◽  
B. Kolasa ◽  
J. M. Gibson

We studied the beginning oxidation stage of a model metal system by in-situ transmission electron microscopy (TEM) in order to gain insights into the initial kinetics of oxidation. In-situ TEM experiments can distinguish between nucleation and growth since individual oxide islands are imaged. We chose to investigate Cu, since it is a simple face-centered cubic metal. Also, Cu is a highly promising metal interconnect material because of its low resistivity and good electromigration properties as compared to Al.Single crystal -1000Å 99.999% purity copper films were grown on irradiated NaCl in an UHV e-beam evaporator system. The free-standing copper film was placed on a specially designed holder, which permits resistive heating of the sample. The microscope used for this experiment is a modified ultra-high vacuum, with base pressure of 10−9 torr, JEOL200CX, operated at l00kV. To remove the native oxide formed during exposure in air, the Cu film was annealed at ∼350°C


2001 ◽  
Vol 7 (S2) ◽  
pp. 324-325
Author(s):  
D.L. Medlin

Interfacial anisotropy complicates the prediction of microstructural evolution, particularly ir extreme cases for which the presence of facets and corners prevents the application of classical notions of grain-boundary curvature. Although there has been much effort at incorporating anisotropic grain-boundary properties, including faceted geometries, into computational approaches for microstructural evolution, at present our mechanistic understanding of the behavior of facets anc their junctions remains limited. In this presentation, we investigate the development of faceted boundaries between Σ=3 <111> oriented grains in epitaxially deposited gold thin films. This system is well suited tc experimental studies of facet evolution since the crystallography and structure of the boundaries is already well understood. It is well known that “double-positioning” of epitaxially aligned <111> grains on a surface of three-fold or six-fold symmetry results in a microstructure composed of grains in two twin-related (Σ=3) variants that are separated by facets running vertically through the film and forming 120 degree corners [1,2].


2019 ◽  
Vol 808 ◽  
pp. 151743 ◽  
Author(s):  
Tae-Hoon Kim ◽  
Gaoyuan Ouyang ◽  
Jonathan D. Poplawsky ◽  
Matthew J. Kramer ◽  
Valery I. Levitas ◽  
...  

2017 ◽  
Vol 78 (2) ◽  
pp. 20701
Author(s):  
Florian Banhart ◽  
Alessandro La Torre ◽  
Ferdaous Ben Romdhane ◽  
Ovidiu Cretu

The article is a brief review on the potential of transmission electron microscopy (TEM) in the investigation of atom chains which are the paradigm of a strictly one-dimensional material. After the progress of TEM in the study of new two-dimensional materials, microscopy of free-standing one-dimensional structures is a new challenge with its inherent potentials and difficulties. In-situ experiments in the TEM allowed, for the first time, to generate isolated atomic chains consisting of metals, carbon or boron nitride. Besides having delivered a solid proof for the existence of atomic chains, in-situ TEM studies also enabled us to measure the electrical properties of these fundamental linear structures. While ballistic quantum conductivity is observed in chains of metal atoms, electrical transport in chains of sp1-hybridized carbon is limited by resonant states and reflections at the contacts. Although substantial progress has been made in recent TEM studies of atom chains, fundamental questions have to be answered, concerning the structural stability of the chains, bonding states at the contacts, and the suitability for applications in nanotechnology.


Author(s):  
Christopher Hobbs ◽  
Sonia Jaskaniec ◽  
Eoin K. McCarthy ◽  
Clive Downing ◽  
Konrad Opelt ◽  
...  

1997 ◽  
Vol 504 ◽  
Author(s):  
V. S. Touboltsev ◽  
E. Johnson ◽  
U. Dahmen ◽  
A. Johansen ◽  
L. Sarholt ◽  
...  

AbstracrSi<110> single crystals were implanted at a temperature of 835 K with 150 keV Pb+ ions to a fluence of 1·1020 m−2 corresponding to an average concentration of 2–3 at%. The implanted samples have been studied by Rutherford Backscattering (RBS)/channeling and transmission electron microscopy (TEM) techniques. In as-implanted samples the main fraction of implanted Pb was located on substitutional sites in the Si matrix thus providing a highly supersaturated solution of Pb in Si. Spontaneous precipitation of Pb, giving rise to formation of nanosized Pb inclusions, was found to take place only in the peak region of the implantation. TEM analysis showed that the Pb precipitates had sizes from about 2 to 20 nm and that they grew in parallel cube orientation relationship with the host matrix. The shape of the inclusions was found to be approximately cuboctahedral with poorly developed {111} and {100} facets.In-situ RBS/channeling heating/cooling experiments on both as-implanted samples and samples previously furnace-annealed at 1175 K showed a distinct melting/solidification hysteresis of the Pb inclusions around the bulk melting point for Pb at 600 K. These results were verified by in-situ TEM heating/cooling experiments on as-implanted samples.


Sign in / Sign up

Export Citation Format

Share Document