In Situ TEM Analysis of Facet Motion in Gold Σ=3 {112} Boundaries

2001 ◽  
Vol 7 (S2) ◽  
pp. 324-325
Author(s):  
D.L. Medlin

Interfacial anisotropy complicates the prediction of microstructural evolution, particularly ir extreme cases for which the presence of facets and corners prevents the application of classical notions of grain-boundary curvature. Although there has been much effort at incorporating anisotropic grain-boundary properties, including faceted geometries, into computational approaches for microstructural evolution, at present our mechanistic understanding of the behavior of facets anc their junctions remains limited. In this presentation, we investigate the development of faceted boundaries between Σ=3 <111> oriented grains in epitaxially deposited gold thin films. This system is well suited tc experimental studies of facet evolution since the crystallography and structure of the boundaries is already well understood. It is well known that “double-positioning” of epitaxially aligned <111> grains on a surface of three-fold or six-fold symmetry results in a microstructure composed of grains in two twin-related (Σ=3) variants that are separated by facets running vertically through the film and forming 120 degree corners [1,2].

2001 ◽  
Vol 216 ◽  
pp. 153-0
Author(s):  
Takanori Kiguchi ◽  
Naoki Wakiya ◽  
Kazuo Shinozaki ◽  
Nobuyasu Mizutani

Author(s):  
Charles W. Allen

Irradiation effects studies employing TEMs as analytical tools have been conducted for almost as many years as materials people have done TEM, motivated largely by materials needs for nuclear reactor development. Such studies have focussed on the behavior both of nuclear fuels and of materials for other reactor components which are subjected to radiation-induced degradation. Especially in the 1950s and 60s, post-irradiation TEM analysis may have been coupled to in situ (in reactor or in pile) experiments (e.g., irradiation-induced creep experiments of austenitic stainless steels). Although necessary from a technological point of view, such experiments are difficult to instrument (measure strain dynamically, e.g.) and control (temperature, e.g.) and require months or even years to perform in a nuclear reactor or in a spallation neutron source. Consequently, methods were sought for simulation of neutroninduced radiation damage of materials, the simulations employing other forms of radiation; in the case of metals and alloys, high energy electrons and high energy ions.


Nano Letters ◽  
2016 ◽  
Vol 16 (11) ◽  
pp. 7013-7018 ◽  
Author(s):  
Quentin Jeangros ◽  
Martial Duchamp ◽  
Jérémie Werner ◽  
Maximilian Kruth ◽  
Rafal E. Dunin-Borkowski ◽  
...  

1993 ◽  
Vol 323 ◽  
Author(s):  
Yujing Wu ◽  
Elizabeth G. Jacobs ◽  
Cyrus Pouraghabagher ◽  
Russell F. Pinizzotto

AbstractThe formation and growth of Cu6Sn5 and Cu3Sn at the interface of Sn-Pb solder/copper substrate are factors which affect the solderability and reliability of electronic solder joints. The addition of particles such as Ni to eutectic Sn-Pb solder drastically affects the activation energies of formation for both intermetallics. This study was performed to understand the mechanisms of intermetallic formation and the effects of Ni on intermetallic growth. Cu/Sn and Cu/Sn/Ni thin films were deposited by evaporation and observed in the TEM in real time using a hot stage. The diffusion of Sn through Cu6Sn5 and Cu3Sn followed by reaction with Cu must occur for intermetallic formation and growth to take place. Ni is an effective diffusion barrier which prevents Sn from diffusing into Cu.


2005 ◽  
Vol 875 ◽  
Author(s):  
Marc Legros ◽  
Gerhard Dehm ◽  
T. John Balk

AbstractTo investigate the origin of the high strength of thin films, in-situ cross-sectional TEM deformation experiments have been performed on several metallic films attached to rigid substrates. Thermal cycles, comparable to those performed using laser reflectometry, were applied to thin foils inside the TEM and dislocation motion was recorded dynamically on video. These observations can be directly compared to the current models of dislocation hardening in thin films. As expected, the role of interfaces is crucial, but, depending on their nature, they can attract or repel dislocations. When the film/interface holds off dislocations, experimental values of film stress match those predicted by the Nix-Freund model. In contrast, the attracting case leads to higher stresses that are not explained by this model. Two possible hardening scenarios are explored here. The first one assumes that the dislocation/interface attraction reduces dislocation mobility and thus increases the yield stress of the film. The second one focuses on the lack of dislocation nucleation processes in the case of attracting interfaces, even though a few sources have been observed in-situ.


2020 ◽  
Vol 528 ◽  
pp. 151872 ◽  
Author(s):  
Qingshan Dong ◽  
Peyman Saidi ◽  
Laurent K. Béland ◽  
Zhongwen Yao ◽  
Cong Dai ◽  
...  

Author(s):  
Daniel Bufford ◽  
Douglas Stauffer ◽  
William Mook ◽  
S.A. Syed Asif ◽  
Brad Boyce ◽  
...  

2011 ◽  
Vol 17 (S2) ◽  
pp. 1362-1363
Author(s):  
P Gao ◽  
C Nelson ◽  
J Jokisaari ◽  
S Baek ◽  
C Eom ◽  
...  

Extended abstract of a paper presented at Microscopy and Microanalysis 2011 in Nashville, Tennessee, USA, August 7–August 11, 2011.


2016 ◽  
Vol 89 ◽  
pp. 1071-1078 ◽  
Author(s):  
Visweswara Chakravarthy Gudla ◽  
Kristian Rechendorff ◽  
Zoltan Imre Balogh ◽  
Takeshi Kasama ◽  
Rajan Ambat

Sign in / Sign up

Export Citation Format

Share Document