In-Situ UHV TEM Investigations of the Initial Stages of Cu(001) Oxidation

1997 ◽  
Vol 3 (S2) ◽  
pp. 583-584
Author(s):  
J. C. Yang ◽  
M. Yeadon ◽  
B. Kolasa ◽  
J. M. Gibson

We studied the beginning oxidation stage of a model metal system by in-situ transmission electron microscopy (TEM) in order to gain insights into the initial kinetics of oxidation. In-situ TEM experiments can distinguish between nucleation and growth since individual oxide islands are imaged. We chose to investigate Cu, since it is a simple face-centered cubic metal. Also, Cu is a highly promising metal interconnect material because of its low resistivity and good electromigration properties as compared to Al.Single crystal -1000Å 99.999% purity copper films were grown on irradiated NaCl in an UHV e-beam evaporator system. The free-standing copper film was placed on a specially designed holder, which permits resistive heating of the sample. The microscope used for this experiment is a modified ultra-high vacuum, with base pressure of 10−9 torr, JEOL200CX, operated at l00kV. To remove the native oxide formed during exposure in air, the Cu film was annealed at ∼350°C

Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3727
Author(s):  
Huanhuan He ◽  
Zhiwei Lin ◽  
Shengming Jiang ◽  
Xiaotian Hu ◽  
Jian Zhang ◽  
...  

The FeCoNiCrTi0.2 high-entropy alloys fabricated by vacuum arc melting method, and the annealed pristine material, are face centered cubic structures with coherent γ’ precipitation. Samples were irradiated with 50 keV He+ ions to a fluence of 2 × 1016 ions/cm2 at 723 K, and an in situ annealing experiment was carried out to monitor the evolution of helium bubbles during heating to 823 and 923 K. The pristine structure of FeCoNiCrTi0.2 samples and the evolution of helium bubbles during in situ annealing were both characterized by transmission electron microscopy. The annealing temperature and annealing time affect the process of helium bubbles evolution and formation. Meanwhile, the grain boundaries act as sinks to accumulate helium bubbles. However, the precipitation phase seems have few effects on the helium bubble evolution, which may be due to the coherent interface and same structure of γ’ precipitation and matrix.


1991 ◽  
Vol 235 ◽  
Author(s):  
M. I. Buckett ◽  
L. D. Marks

ABSTRACT:L: NiO surfaces have been the subject of numerous investigations using a wide variety of techniques, including transmission electron microscopy (TEM). The findings, however, remain inconclusive regarding the relative contributions of irradiation effects such as ballistic erosion, electron-stimulated desorption (ESD) and electron-stimulated reaction (ESR), especially at incident electron energies exceeding 100 keV. In earlier studies it was suggested that the surface environment played a significant role in the radiation damage process. In this study, the effect of the surface environment is further illustrated by in-situ experiments in controlled sample environments. NiO surfaces were irradiated with electrons, ranging in energy from 3 keV to 300 keV, and examined in-situ under ultra-high vacuum (UHV) conditions (10−10 Torr), as well as in controlled oxidizing (oxygen) and reducing (CO) atmospheres. The nature of the surface reactions and their contribution to the overall radiation damage process in the various energy regimes is examined.


Author(s):  
Xianghong Tong ◽  
Oliver Pohland ◽  
J. Murray Gibson

The nucleation and initial stage of Pd2Si crystals on Si(111) surface is studied in situ using an Ultra-High Vacuum (UHV) Transmission Electron Microscope (TEM). A modified JEOL 200CX TEM is used for the study. The Si(111) sample is prepared by chemical thinning and is cleaned inside the UHV chamber with base pressure of 1x10−9 τ. A Pd film of 20 Å thick is deposited on to the Si(111) sample in situ using a built-in mini evaporator. This room temperature deposited Pd film is thermally annealed subsequently to form Pd2Si crystals. Surface sensitive dark field imaging is used for the study to reveal the effect of surface and interface steps.The initial growth of the Pd2Si has three stages: nucleation, growth of the nuclei and coalescence of the nuclei. Our experiments shows that the nucleation of the Pd2Si crystal occurs randomly and almost instantaneously on the terraces upon thermal annealing or electron irradiation.


Author(s):  
D. Loretto ◽  
J. M. Gibson ◽  
S. M. Yalisove

The silicides CoSi2 and NiSi2 are both metallic with the fee flourite structure and lattice constants which are close to silicon (1.2% and 0.6% smaller at room temperature respectively) Consequently epitaxial cobalt and nickel disilicide can be grown on silicon. If these layers are formed by ultra high vacuum (UHV) deposition (also known as molecular beam epitaxy or MBE) their thickness can be controlled to within a few monolayers. Such ultrathin metal/silicon systems have many potential applications: for example electronic devices based on ballistic transport. They also provide a model system to study the properties of heterointerfaces. In this work we will discuss results obtained using in situ and ex situ transmission electron microscopy (TEM).In situ TEM is suited to the study of MBE growth for several reasons. It offers high spatial resolution and the ability to penetrate many monolayers of material. This is in contrast to the techniques which are usually employed for in situ measurements in MBE, for example low energy electron diffraction (LEED) and reflection high energy electron diffraction (RHEED), which are both sensitive to only a few monolayers at the surface.


Author(s):  
Michael T. Marshall ◽  
Xianghong Tong ◽  
J. Murray Gibson

We have modified a JEOL 2000EX Transmission Electron Microscope (TEM) to allow in-situ ultra-high vacuum (UHV) surface science experiments as well as transmission electron diffraction and imaging. Our goal is to support research in the areas of in-situ film growth, oxidation, and etching on semiconducter surfaces and, hence, gain fundamental insight of the structural components involved with these processes. The large volume chamber needed for such experiments limits the resolution to about 30 Å, primarily due to electron optics. Figure 1 shows the standard JEOL 2000EX TEM. The UHV chamber in figure 2 replaces the specimen area of the TEM, as shown in figure 3. The chamber is outfitted with Low Energy Electron Diffraction (LEED), Auger Electron Spectroscopy (AES), Residual Gas Analyzer (RGA), gas dosing, and evaporation sources. Reflection Electron Microscopy (REM) is also possible. This instrument is referred to as SHEBA (Surface High-energy Electron Beam Apparatus).The UHV chamber measures 800 mm in diameter and 400 mm in height. JEOL provided adapter flanges for the column.


1990 ◽  
Vol 181 ◽  
Author(s):  
J. M. Gibson ◽  
D. Loretto ◽  
D. Cherns

ABSTRACTWe have studied the formation of metal silicides in-situ in an ultra-high vacuum transmission electron microscope. Metals were deposited on in-situ cleaned, reconstructed silicon surfaces and annealed. For the metals Ni and Co, we find that the phase sequence in ultra-thin films is different from that seen in ≈1000 Å thick films, and attribute this to the high surface-to-volume ratio. In general reactions occur at room temperature, to form an epitaxial phase if possible. We report preliminary new results on the formation of Pd2Si.


2007 ◽  
Vol 1026 ◽  
Author(s):  
Li Sun ◽  
John E. Pearson ◽  
Judith C. Yang

AbstractThe nucleation and growth of Cu2O and NiO islands due to oxidation of Cu-24%Ni(001) films were monitored at various temperatures by in situ ultra-high vacuum (UHV) transmission electron microscopy (TEM). In remarkable contrast to our previous observations of Cu and Cu-Au oxidation, irregular-shaped polycrystalline oxide islands were observed to form with respect to the Cu-Ni alloy film, and an unusual second oxide nucleation stage was noted. Similar to Cu oxidation, the cross-sectional area growth rate of the oxide island is linear indicating oxygen surface diffusion is the primary mechanism of oxide growth.


2010 ◽  
Vol 150-151 ◽  
pp. 1745-1749
Author(s):  
Hai Bo Wang ◽  
Li Ma ◽  
Wei Cai

The microstructure evolution of sputtered polycrystalline Ni54.75Mn13.25Fe7Ga25 ferromagnetic shape memory thin film annealed under different conditions is studied. Microstructure of different annealed films was studied using Transmission Electron Microscope (TEM) and corresponding selected area electron diffraction (SAED) patterns. The result shows that in the microstructure of as-deposited Ni54.75Mn13.25Fe7Ga25 free-standing film, after annealed at 1073 K for different time, the crystalline grain grows up with the increase of the annealing time. By analysis of the SAED patterns, the structure of the thin films change from face-centered cubic austenite to orthorhombic structure martensite compared between the film annealed at 1073 K for 10 mins, 1hr, 4 hrs, and 24 hrs respectively. It indicated that the heat treatment is an effective method of crystallizing behavior for the thin film.


1998 ◽  
Vol 4 (S2) ◽  
pp. 608-609
Author(s):  
Ruud M. Tromp

To obtain a full and detailed understanding of the spatiotemporal dynamics of surface processes such as epitaxial growth, strain relaxation, phase transformations and phase transitions, chemisorption and etching, in situ real-time observations have proven to be invaluable. The development of two experimental techniques, i.e. Low Energy Electron Microscopy (LEEM) typically operating at electron energies below 10 eV, and Ultra-High-Vacuum Transmission Electron Microscopy (UHV-TEM) at several 100 keV, has made such in situ studies routinely possible. In many cases, the videodata obtained from such experiments are amenable to detailed, quantitative analysis, yielding statistical, kinetic and thermodynamic information that cannot be obtained in any other way.I will discuss recent experimental developments, including the design and construction of a new and improved LEEM instrument. Figure 1 shows a schematic diagram of this new machine. There are several features that distinguishes this design from most other LEEMs. One is the use of a 90 degree deflection magnetic prism array,


Sign in / Sign up

Export Citation Format

Share Document