Retrieving the polarizability tensor of wire media

Author(s):  
Parry Y. Chen ◽  
Jacob Ben-Yakar ◽  
Yonatan Sivan ◽  
David J. Bergman
2020 ◽  
Author(s):  
Kaihua Zhang ◽  
Ty Balduf ◽  
Marco Caricato

<div> <div> <p> </p><div> <div> <div> <p>This work presents the first simulations of the full optical rotation (OR) tensor at coupled cluster with single and double excitations (CCSD) level in the modified velocity gauge (MVG) formalism. The CCSD-MVG OR tensor is origin independent, and each tensor element can in principle be related directly to experimental measurements on oriented systems. We compare the CCSD results with those from two density functionals, B3LYP and CAM-B3LYP, on a test set of 22 chiral molecules. The results show that the functionals consistently overestimate the CCSD results for the individual tensor components and for the trace (which is related to the isotropic OR), by 10-20% with CAM-B3LYP and 20-30% with B3LYP. The data show that the contribution of the electric dipole-magnetic dipole polarizability tensor to the OR tensor is on average twice as large as that of the electric dipole-electric quadrupole polarizability tensor. The difficult case of (1S,4S)-(–)-norbornenone also reveals that the evaluation of the former polarizability tensor is more sensitive than the latter. We attribute the better agreement of CAM-B3LYP with CCSD to the ability of this functional to better reproduce electron delocalization compared with B3LYP, consistently with previous reports on isotropic OR. The CCSD-MVG approach allows the computation of reference data of the full OR tensor, which may be used to test more computationally efficient approximate methods that can be employed to study realistic models of optically active materials. </p> </div> </div> </div> </div> </div>


2008 ◽  
Vol 73 (11) ◽  
pp. 1509-1524 ◽  
Author(s):  
Ivana Paidarová ◽  
Roman Čurík ◽  
Stephan P. A. Sauer

We illustrate for a set of small hydrocarbons, CH4, C2H4, C3H6 and C3H8, the important role of the electric dipole polarizability tensor and its geometric derivatives in theoretical models of electron energy-loss spectra (EELS). The coupled cluster linear response method together with Sadlej's polarized valence triple zeta basis set of atomic orbitals were used to calculate the polarizabilities and polarizability gradients. Incorporation of these ab initio data into the discrete momentum representation method (DMR) leads to perfect agreement between theory and collision experiments.


2019 ◽  
Vol 9 (19) ◽  
pp. 4113 ◽  
Author(s):  
Yadong Wan ◽  
Zhen Wang ◽  
Peng Wang ◽  
Zhiyang Liu ◽  
Na Li ◽  
...  

As an underground metal detection technology, the electromagnetic induction (EMI) method is widely used in many cases. Therefore, the EMI detection algorithms with excellent performance are worth studying. One of the EMI detection methods in the underground metal detection is the filter method, which first obtains the secondary magnetic field data and then uses the Kalman filter (KF) and the extended Kalman filter (EKF) to estimate the parameters of metal targets. However, the traditional KF methods used in the underground metal detection have an unsatisfactory performance of the convergence as the algorithms are given a random or a fixed initial value. Here, an initial state estimation algorithm for the underground metal detection is proposed. The initial state of the target’s horizontal position is estimated by the first order central moments of the secondary field strength map. In addition, the initial state of the target’s depth is estimated by the full width at half maximum (FWHM) method. In addition, the initial state of the magnetic polarizability tensor is estimated by the least squares method. Then, these initial states are used as the initial values for KF and EKF. Finally, the position, posture and polarizability of the target are recursively calculated. A simulation platform for the underground metal detection is built in this paper. The simulation results show that the initial value estimation method proposed for the filtering algorithm has an excellent performance in the underground metal detection.


1975 ◽  
Vol 16 (12) ◽  
pp. vii-viii
Author(s):  
M. Bösch ◽  
R. Hofmann

2005 ◽  
Vol 48 (1) ◽  
pp. 133-138 ◽  
Author(s):  
S. Sudhakaran ◽  
Y. Hao ◽  
C. G. Parini

Author(s):  
Dmytro Vovchuk ◽  
Serhii Haliuk ◽  
Leonid Politanskyy

In the paper the development of the components of communication means is considered based on the wire metastructures. This approach is novel and quite promising due to the metamaterials provides new opportunities for the radio engineering devices such as antennas, absorbers etc. First of all it makes possible decreasing of the dimensions of devices while the characteristics stay the same or better. Here the artificially created metastructure that consists of parallel metallic wires and characterizes by a negative electric permittivity was investigated. The possibility of broadband power transfer of electromagnetic waves was demonstrated. Also, at first time, the investigation of possible signal distortions due to wave propagation through the wire medium (WM) slab was performed via analyzing of spectral characteristics. The obtained results allow applying of WM to power transfer in wide frequency range (not only at frequencies of Fabry-Perot resonant) and enhancement of weak source propagation as well as to antennas constructions due to the absence of signal distortions. One of the promising applications of such structures is the possibility of realizing of flexible screens with nanometer thickness and high resolution.


1997 ◽  
Vol 9 (2) ◽  
pp. 138-143 ◽  
Author(s):  
J. Jens Wolff ◽  
Daniela Längle ◽  
Daniela Hillenbrand ◽  
Rüdiger Wortmann ◽  
Ralf Matschiner ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document